Blood lipid-related low-frequency variants in LDLR and PCSK9 are associated with onset age and risk of myocardial infarction in Japanese View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Tomoyuki Tajima, Hiroyuki Morita, Kaoru Ito, Tsutomu Yamazaki, Michiaki Kubo, Issei Komuro, Yukihide Momozawa

ABSTRACT

Recent studies have revealed the importance of rare variants in myocardial infarction (MI) susceptibility in European populations. Because genetic architectures vary in different populations, we investigated how they contribute to MI susceptibility in Japanese subjects. We performed targeted sequencing of 36 coronary artery disease risk genes, identified by genome-wide association studies, in 9,956 cases and 8,373 controls. Gene-based association tests identified significant enrichment of rare variants in LDLR and PCSK9 in MI cases. We identified 52 (novel 22) LDLR variants predicted to be damaging. Carriers of these variants showed a higher risk of MI (carriers/non-carriers 89/9867 in cases, 17/8356 controls, OR = 4.4, P = 7.2 × 10-10), higher LDL-cholesterol levels and younger age of onset for MI. With respect to PCSK9, E32K carriers showed higher LDL-cholesterol levels and younger age of onset for MI, whereas R93C carriers had lower LDL-cholesterol levels. A significant correlation between LDL-cholesterol levels and onset age of MI was observed in these variant carriers. In good agreement with previous studies in patients with familial hypercholesterolaemia, our study in the Japanese general population showed that rare variants in LDLR and PCSK9 were associated with the onset age of MI by altering LDL-cholesterol levels. More... »

PAGES

8107

References to SciGraph publications

  • 2005-02. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9 in NATURE GENETICS
  • 2015-10. A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease in NATURE GENETICS
  • 2011-03. The evolving epidemiology of acute coronary syndromes in NATURE REVIEWS CARDIOLOGY
  • 2015-03. A genome-wide association study identifies PLCL2 and AP3D1-DOT1L-SF3A2 as new susceptibility loci for myocardial infarction in Japanese in EUROPEAN JOURNAL OF HUMAN GENETICS
  • 2009-03. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants in NATURE GENETICS
  • 2012-11. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population in NATURE GENETICS
  • 2014-02. Meta-analysis of gene-level tests for rare variant association in NATURE GENETICS
  • 2012-08. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease in NATURE GENETICS
  • 2011-03-06. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease in NATURE GENETICS
  • 2015-12. Exome-wide association analysis reveals novel coding sequence variants associated with lipid traits in Chinese in NATURE COMMUNICATIONS
  • 2010-10-28. A map of human genome variation from population-scale sequencing in NATURE
  • 2014-04. MutationTaster2: mutation prediction for the deep-sequencing age in NATURE METHODS
  • 2013-01. Large-scale association analysis identifies new risk loci for coronary artery disease in NATURE GENETICS
  • 2015-02. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction in NATURE
  • 2016-06. Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease in NATURE GENETICS
  • 2013-12. DGIdb: mining the druggable genome in NATURE METHODS
  • 2003-06. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia in NATURE GENETICS
  • 2010-04. A method and server for predicting damaging missense mutations in NATURE METHODS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-018-26453-x

    DOI

    http://dx.doi.org/10.1038/s41598-018-26453-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104171971

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29802317


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "RIKEN", 
              "id": "https://www.grid.ac/institutes/grid.7597.c", 
              "name": [
                "Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan", 
                "Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tajima", 
            "givenName": "Tomoyuki", 
            "id": "sg:person.01223116234.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223116234.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tokyo", 
              "id": "https://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Morita", 
            "givenName": "Hiroyuki", 
            "id": "sg:person.01114416755.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114416755.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Laboratory for Cardiovascular Disease, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ito", 
            "givenName": "Kaoru", 
            "id": "sg:person.011216171403.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011216171403.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tokyo Hospital", 
              "id": "https://www.grid.ac/institutes/grid.412708.8", 
              "name": [
                "Center for Epidemiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yamazaki", 
            "givenName": "Tsutomu", 
            "id": "sg:person.01270006264.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270006264.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RIKEN", 
              "id": "https://www.grid.ac/institutes/grid.7597.c", 
              "name": [
                "Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kubo", 
            "givenName": "Michiaki", 
            "id": "sg:person.016323146432.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016323146432.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tokyo", 
              "id": "https://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Komuro", 
            "givenName": "Issei", 
            "id": "sg:person.01012024207.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012024207.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RIKEN", 
              "id": "https://www.grid.ac/institutes/grid.7597.c", 
              "name": [
                "Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Momozawa", 
            "givenName": "Yukihide", 
            "id": "sg:person.01032327555.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032327555.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1056/nejmoa1308027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000463047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000937327", 
              "https://doi.org/10.1038/ng.784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000937327", 
              "https://doi.org/10.1038/ng.784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2011.05.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001583272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002041462", 
              "https://doi.org/10.1038/ncomms10206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002276775", 
              "https://doi.org/10.1038/ng.3561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-1809.2008.00436.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002448087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth0410-248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007489634", 
              "https://doi.org/10.1038/nmeth0410-248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth0410-248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007489634", 
              "https://doi.org/10.1038/nmeth0410-248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2014.01.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008314747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa072366", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008342647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009668443", 
              "https://doi.org/10.1038/ng.2337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010028319", 
              "https://doi.org/10.1038/ng.2438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010608717", 
              "https://doi.org/10.1038/nature09534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010608717", 
              "https://doi.org/10.1038/nature09534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/humu.20201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011510195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/humu.20201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011510195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011528564", 
              "https://doi.org/10.1038/ng1161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011528564", 
              "https://doi.org/10.1038/ng1161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.176601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014452737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/519795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019061180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020782180", 
              "https://doi.org/10.1038/nmeth.2890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejhg.2014.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021860041", 
              "https://doi.org/10.1038/ejhg.2014.110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023014918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024601187", 
              "https://doi.org/10.1038/ng.2480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13917", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025090131", 
              "https://doi.org/10.1038/nature13917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1194/jlr.m037085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025243735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.atherosclerosis.2006.12.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025997633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.080531.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031804211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.107524.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032096953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032479442", 
              "https://doi.org/10.1038/ng1509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032479442", 
              "https://doi.org/10.1038/ng1509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mrfmmm.2006.09.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033887004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034378235", 
              "https://doi.org/10.1038/ng.3396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038266369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.atherosclerosis.2016.04.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038290054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/gtmb.2010.0036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039315543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.092619.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040216656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bmj.a2423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040602485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040621712", 
              "https://doi.org/10.1038/ng.2852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa1510926", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041816894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm199404143301503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046400255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4161/fly.19695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046734556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.atherosclerosis.2009.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046992911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa1602777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049971464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.327", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050004376", 
              "https://doi.org/10.1038/ng.327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.327", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050004376", 
              "https://doi.org/10.1038/ng.327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa1507652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050785431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrcardio.2010.199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052960461", 
              "https://doi.org/10.1038/nrcardio.2010.199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053014290", 
              "https://doi.org/10.1038/nmeth.2689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circgenetics.116.001410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063343125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circgenetics.116.001410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063343125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14806/ej.17.1.200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067372670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddw335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083732410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.je.2016.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083752466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.je.2016.12.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083760468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circresaha.117.312086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099613660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circresaha.117.312086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099613660"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Recent studies have revealed the importance of rare variants in myocardial infarction (MI) susceptibility in European populations. Because genetic architectures vary in different populations, we investigated how they contribute to MI susceptibility in Japanese subjects. We performed targeted sequencing of 36 coronary artery disease risk genes, identified by genome-wide association studies, in 9,956 cases and 8,373 controls. Gene-based association tests identified significant enrichment of rare variants in LDLR and PCSK9 in MI cases. We identified 52 (novel 22) LDLR variants predicted to be damaging. Carriers of these variants showed a higher risk of MI (carriers/non-carriers 89/9867 in cases, 17/8356 controls, OR\u2009=\u20094.4, P\u2009=\u20097.2\u2009\u00d7\u200910-10), higher LDL-cholesterol levels and younger age of onset for MI. With respect to PCSK9, E32K carriers showed higher LDL-cholesterol levels and younger age of onset for MI, whereas R93C carriers had lower LDL-cholesterol levels. A significant correlation between LDL-cholesterol levels and onset age of MI was observed in these variant carriers. In good agreement with previous studies in patients with familial hypercholesterolaemia, our study in the Japanese general population showed that rare variants in LDLR and PCSK9 were associated with the onset age of MI by altering LDL-cholesterol levels.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-018-26453-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "Blood lipid-related low-frequency variants in LDLR and PCSK9 are associated with onset age and risk of myocardial infarction in Japanese", 
        "pagination": "8107", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3e5004936385bc1f5e1775f482ad7c36ba3044ad02a211dfdf9fa022f56505e7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29802317"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-018-26453-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104171971"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-018-26453-x", 
          "https://app.dimensions.ai/details/publication/pub.1104171971"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000571.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-018-26453-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-26453-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-26453-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-26453-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-26453-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    284 TRIPLES      21 PREDICATES      78 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-018-26453-x schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N1b7a0a027e6f4a2c8d2b19096e561e3e
    4 schema:citation sg:pub.10.1038/ejhg.2014.110
    5 sg:pub.10.1038/nature09534
    6 sg:pub.10.1038/nature13917
    7 sg:pub.10.1038/ncomms10206
    8 sg:pub.10.1038/ng.2337
    9 sg:pub.10.1038/ng.2438
    10 sg:pub.10.1038/ng.2480
    11 sg:pub.10.1038/ng.2852
    12 sg:pub.10.1038/ng.327
    13 sg:pub.10.1038/ng.3396
    14 sg:pub.10.1038/ng.3561
    15 sg:pub.10.1038/ng.784
    16 sg:pub.10.1038/ng1161
    17 sg:pub.10.1038/ng1509
    18 sg:pub.10.1038/nmeth.2689
    19 sg:pub.10.1038/nmeth.2890
    20 sg:pub.10.1038/nmeth0410-248
    21 sg:pub.10.1038/nrcardio.2010.199
    22 https://doi.org/10.1002/humu.20201
    23 https://doi.org/10.1016/j.ajhg.2011.05.029
    24 https://doi.org/10.1016/j.ajhg.2014.01.009
    25 https://doi.org/10.1016/j.atherosclerosis.2006.12.035
    26 https://doi.org/10.1016/j.atherosclerosis.2009.02.006
    27 https://doi.org/10.1016/j.atherosclerosis.2016.04.011
    28 https://doi.org/10.1016/j.je.2016.12.003
    29 https://doi.org/10.1016/j.je.2016.12.005
    30 https://doi.org/10.1016/j.mrfmmm.2006.09.003
    31 https://doi.org/10.1056/nejm199404143301503
    32 https://doi.org/10.1056/nejmoa072366
    33 https://doi.org/10.1056/nejmoa1308027
    34 https://doi.org/10.1056/nejmoa1507652
    35 https://doi.org/10.1056/nejmoa1510926
    36 https://doi.org/10.1056/nejmoa1602777
    37 https://doi.org/10.1086/519795
    38 https://doi.org/10.1089/gtmb.2010.0036
    39 https://doi.org/10.1093/bioinformatics/btp324
    40 https://doi.org/10.1093/bioinformatics/btp352
    41 https://doi.org/10.1093/hmg/ddw335
    42 https://doi.org/10.1101/gr.080531.108
    43 https://doi.org/10.1101/gr.092619.109
    44 https://doi.org/10.1101/gr.107524.110
    45 https://doi.org/10.1101/gr.176601
    46 https://doi.org/10.1111/j.1469-1809.2008.00436.x
    47 https://doi.org/10.1136/bmj.a2423
    48 https://doi.org/10.1161/circgenetics.116.001410
    49 https://doi.org/10.1161/circresaha.117.312086
    50 https://doi.org/10.1194/jlr.m037085
    51 https://doi.org/10.14806/ej.17.1.200
    52 https://doi.org/10.4161/fly.19695
    53 schema:datePublished 2018-12
    54 schema:datePublishedReg 2018-12-01
    55 schema:description Recent studies have revealed the importance of rare variants in myocardial infarction (MI) susceptibility in European populations. Because genetic architectures vary in different populations, we investigated how they contribute to MI susceptibility in Japanese subjects. We performed targeted sequencing of 36 coronary artery disease risk genes, identified by genome-wide association studies, in 9,956 cases and 8,373 controls. Gene-based association tests identified significant enrichment of rare variants in LDLR and PCSK9 in MI cases. We identified 52 (novel 22) LDLR variants predicted to be damaging. Carriers of these variants showed a higher risk of MI (carriers/non-carriers 89/9867 in cases, 17/8356 controls, OR = 4.4, P = 7.2 × 10<sup>-10</sup>), higher LDL-cholesterol levels and younger age of onset for MI. With respect to PCSK9, E32K carriers showed higher LDL-cholesterol levels and younger age of onset for MI, whereas R93C carriers had lower LDL-cholesterol levels. A significant correlation between LDL-cholesterol levels and onset age of MI was observed in these variant carriers. In good agreement with previous studies in patients with familial hypercholesterolaemia, our study in the Japanese general population showed that rare variants in LDLR and PCSK9 were associated with the onset age of MI by altering LDL-cholesterol levels.
    56 schema:genre research_article
    57 schema:inLanguage en
    58 schema:isAccessibleForFree true
    59 schema:isPartOf N5b39249ca7164b529c796afc4608f535
    60 Nc4d410bae87248ada948aaf020216efa
    61 sg:journal.1045337
    62 schema:name Blood lipid-related low-frequency variants in LDLR and PCSK9 are associated with onset age and risk of myocardial infarction in Japanese
    63 schema:pagination 8107
    64 schema:productId N00cfb6b7b51f4de99a8feffed1315b43
    65 N126a4c04340347438a6483827630f3e8
    66 N4680a8bc1d54475abe11453b7351e270
    67 N7050b85004dc42c496712db758af53d4
    68 Nfc415818587345d8a2ab4894209f3da1
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104171971
    70 https://doi.org/10.1038/s41598-018-26453-x
    71 schema:sdDatePublished 2019-04-10T22:42
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher N1848d3dc9c694c4582345da81a1d19fd
    74 schema:url https://www.nature.com/articles/s41598-018-26453-x
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N00cfb6b7b51f4de99a8feffed1315b43 schema:name readcube_id
    79 schema:value 3e5004936385bc1f5e1775f482ad7c36ba3044ad02a211dfdf9fa022f56505e7
    80 rdf:type schema:PropertyValue
    81 N126a4c04340347438a6483827630f3e8 schema:name nlm_unique_id
    82 schema:value 101563288
    83 rdf:type schema:PropertyValue
    84 N1848d3dc9c694c4582345da81a1d19fd schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 N1b7a0a027e6f4a2c8d2b19096e561e3e rdf:first sg:person.01223116234.63
    87 rdf:rest N95280a62c69f46d3ad0a171b4ee60f5b
    88 N4680a8bc1d54475abe11453b7351e270 schema:name doi
    89 schema:value 10.1038/s41598-018-26453-x
    90 rdf:type schema:PropertyValue
    91 N4807a9b04be548e884d35b25df3e73cb rdf:first sg:person.01012024207.33
    92 rdf:rest N71e8be293efa46e9973bfe4bb742c9dd
    93 N5b39249ca7164b529c796afc4608f535 schema:volumeNumber 8
    94 rdf:type schema:PublicationVolume
    95 N6e3def69557a45868b91ad811089fa5d rdf:first sg:person.016323146432.35
    96 rdf:rest N4807a9b04be548e884d35b25df3e73cb
    97 N7050b85004dc42c496712db758af53d4 schema:name dimensions_id
    98 schema:value pub.1104171971
    99 rdf:type schema:PropertyValue
    100 N71e8be293efa46e9973bfe4bb742c9dd rdf:first sg:person.01032327555.79
    101 rdf:rest rdf:nil
    102 N8597c4e605594947b585e3c177012294 schema:name Laboratory for Cardiovascular Disease, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
    103 rdf:type schema:Organization
    104 N8e67523fccf0439a9c5f681a33ee421b rdf:first sg:person.011216171403.61
    105 rdf:rest Nc4a28b6f466d451b88acb429c1f29468
    106 N95280a62c69f46d3ad0a171b4ee60f5b rdf:first sg:person.01114416755.93
    107 rdf:rest N8e67523fccf0439a9c5f681a33ee421b
    108 Nc4a28b6f466d451b88acb429c1f29468 rdf:first sg:person.01270006264.53
    109 rdf:rest N6e3def69557a45868b91ad811089fa5d
    110 Nc4d410bae87248ada948aaf020216efa schema:issueNumber 1
    111 rdf:type schema:PublicationIssue
    112 Nfc415818587345d8a2ab4894209f3da1 schema:name pubmed_id
    113 schema:value 29802317
    114 rdf:type schema:PropertyValue
    115 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Biological Sciences
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Genetics
    120 rdf:type schema:DefinedTerm
    121 sg:journal.1045337 schema:issn 2045-2322
    122 schema:name Scientific Reports
    123 rdf:type schema:Periodical
    124 sg:person.01012024207.33 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
    125 schema:familyName Komuro
    126 schema:givenName Issei
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012024207.33
    128 rdf:type schema:Person
    129 sg:person.01032327555.79 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
    130 schema:familyName Momozawa
    131 schema:givenName Yukihide
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032327555.79
    133 rdf:type schema:Person
    134 sg:person.01114416755.93 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
    135 schema:familyName Morita
    136 schema:givenName Hiroyuki
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114416755.93
    138 rdf:type schema:Person
    139 sg:person.011216171403.61 schema:affiliation N8597c4e605594947b585e3c177012294
    140 schema:familyName Ito
    141 schema:givenName Kaoru
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011216171403.61
    143 rdf:type schema:Person
    144 sg:person.01223116234.63 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
    145 schema:familyName Tajima
    146 schema:givenName Tomoyuki
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223116234.63
    148 rdf:type schema:Person
    149 sg:person.01270006264.53 schema:affiliation https://www.grid.ac/institutes/grid.412708.8
    150 schema:familyName Yamazaki
    151 schema:givenName Tsutomu
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270006264.53
    153 rdf:type schema:Person
    154 sg:person.016323146432.35 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
    155 schema:familyName Kubo
    156 schema:givenName Michiaki
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016323146432.35
    158 rdf:type schema:Person
    159 sg:pub.10.1038/ejhg.2014.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021860041
    160 https://doi.org/10.1038/ejhg.2014.110
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1038/nature09534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010608717
    163 https://doi.org/10.1038/nature09534
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/nature13917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025090131
    166 https://doi.org/10.1038/nature13917
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/ncomms10206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002041462
    169 https://doi.org/10.1038/ncomms10206
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/ng.2337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009668443
    172 https://doi.org/10.1038/ng.2337
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/ng.2438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010028319
    175 https://doi.org/10.1038/ng.2438
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/ng.2480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024601187
    178 https://doi.org/10.1038/ng.2480
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/ng.2852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040621712
    181 https://doi.org/10.1038/ng.2852
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/ng.327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050004376
    184 https://doi.org/10.1038/ng.327
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/ng.3396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034378235
    187 https://doi.org/10.1038/ng.3396
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/ng.3561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002276775
    190 https://doi.org/10.1038/ng.3561
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/ng.784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000937327
    193 https://doi.org/10.1038/ng.784
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/ng1161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011528564
    196 https://doi.org/10.1038/ng1161
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/ng1509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032479442
    199 https://doi.org/10.1038/ng1509
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nmeth.2689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053014290
    202 https://doi.org/10.1038/nmeth.2689
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nmeth.2890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020782180
    205 https://doi.org/10.1038/nmeth.2890
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nmeth0410-248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007489634
    208 https://doi.org/10.1038/nmeth0410-248
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nrcardio.2010.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052960461
    211 https://doi.org/10.1038/nrcardio.2010.199
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1002/humu.20201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011510195
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1016/j.ajhg.2011.05.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001583272
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1016/j.ajhg.2014.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008314747
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1016/j.atherosclerosis.2006.12.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025997633
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1016/j.atherosclerosis.2009.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046992911
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1016/j.atherosclerosis.2016.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038290054
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1016/j.je.2016.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083752466
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1016/j.je.2016.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083760468
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1016/j.mrfmmm.2006.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033887004
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1056/nejm199404143301503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046400255
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1056/nejmoa072366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008342647
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1056/nejmoa1308027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000463047
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1056/nejmoa1507652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050785431
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1056/nejmoa1510926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041816894
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1056/nejmoa1602777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049971464
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1089/gtmb.2010.0036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039315543
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1093/hmg/ddw335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083732410
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1101/gr.080531.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031804211
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1101/gr.092619.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040216656
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1101/gr.107524.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096953
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1101/gr.176601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014452737
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1111/j.1469-1809.2008.00436.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002448087
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1136/bmj.a2423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040602485
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1161/circgenetics.116.001410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063343125
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1161/circresaha.117.312086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099613660
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1194/jlr.m037085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025243735
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.14806/ej.17.1.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067372670
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.4161/fly.19695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046734556
    274 rdf:type schema:CreativeWork
    275 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
    276 schema:name Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
    277 rdf:type schema:Organization
    278 https://www.grid.ac/institutes/grid.412708.8 schema:alternateName University of Tokyo Hospital
    279 schema:name Center for Epidemiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan
    280 rdf:type schema:Organization
    281 https://www.grid.ac/institutes/grid.7597.c schema:alternateName RIKEN
    282 schema:name Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
    283 Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
    284 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...