Normalized spatial complexity analysis of neural signals View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Huibin Jia, Yanwei Li, Dongchuan Yu

ABSTRACT

The spatial complexity of neural signals, which was traditionally quantified by omega complexity, varies inversely with the global functional connectivity level across distinct region-of-interests, thus provides a novel approach in functional connectivity analysis. However, the measures in omega complexity are sensitive to the number of neural time-series. Here, normalized spatial complexity was suggested to overcome the above limitation, and was verified by the functional near-infrared spectroscopy (fNIRS) data from a previous published autism spectrum disorder (ASD) research. By this new method, several conclusions consistent with traditional approaches on the pathological mechanisms of ASD were found, i.e., the prefrontal cortex made a major contribution to the hypo-connectivity of young children with ASD. Moreover, some novel findings were also detected (e.g., significantly higher normalized regional spatial complexities of bilateral prefrontal cortices and the variability of normalized local complexity differential of right temporal lobe, and the regional differences of measures in normalized regional spatial complexity), which could not be successfully detected via traditional approaches. These results confirmed the value of this novel approach, and extended the methodology system of functional connectivity. This novel technique could be applied to the neural signal of other neuroimaging techniques and other neurological and cognitive conditions. More... »

PAGES

7912

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-26329-0

DOI

http://dx.doi.org/10.1038/s41598-018-26329-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103996498

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29784971


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southeast University", 
          "id": "https://www.grid.ac/institutes/grid.263826.b", 
          "name": [
            "Key Laboratory of Child Development and Learning Science (Ministry of Education), Research Center for Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jia", 
        "givenName": "Huibin", 
        "id": "sg:person.010244145535.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010244145535.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Xiaozhuang University", 
          "id": "https://www.grid.ac/institutes/grid.440845.9", 
          "name": [
            "College of Preschool Education, Nanjing Xiaozhuang University, Nanjing, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yanwei", 
        "id": "sg:person.016462323434.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016462323434.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southeast University", 
          "id": "https://www.grid.ac/institutes/grid.263826.b", 
          "name": [
            "Key Laboratory of Child Development and Learning Science (Ministry of Education), Research Center for Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Dongchuan", 
        "id": "sg:person.0715646435.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715646435.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/scan/nsv021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001257541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2040-2392-5-35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003530357", 
          "https://doi.org/10.1186/2040-2392-5-35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0504136102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004124686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conb.2005.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004492414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awv051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004752203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2015.03.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005093407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.jbo.20.4.046007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005702298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awh199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010175917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep16152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012866252", 
          "https://doi.org/10.1038/srep16152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/boe.6.002337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015017395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuropsychologia.2008.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016299392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2007.06.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017750492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.4478-13.2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017897963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2040-2392-4-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017993936", 
          "https://doi.org/10.1186/2040-2392-4-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019579803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8760(99)00044-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021882143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-005-0280-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022178790", 
          "https://doi.org/10.1007/s10548-005-0280-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-005-0280-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022178790", 
          "https://doi.org/10.1007/s10548-005-0280-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022342218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3940(97)00224-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023768588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neubiorev.2012.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024220408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bandc.2016.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024701300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.20324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025822163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rasd.2011.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027467810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0601417103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029386022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02447083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030681350", 
          "https://doi.org/10.1007/bf02447083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02447083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030681350", 
          "https://doi.org/10.1007/bf02447083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(85)90011-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030878297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(85)90011-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030878297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.5714-09.2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033831906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01129967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033917895", 
          "https://doi.org/10.1007/bf01129967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01129967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033917895", 
          "https://doi.org/10.1007/bf01129967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tins.2007.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034888945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biopsych.2011.03.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035287721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2013.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035382360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2009.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035609212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1013699998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036427477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnhum.2010.00176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037222851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhq190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041066439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13229-015-0052-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042377884", 
          "https://doi.org/10.1186/s13229-015-0052-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2008.12.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043405684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0054516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045367979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3223(97)00547-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047389434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02172227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047512571", 
          "https://doi.org/10.1007/bf02172227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02172227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047512571", 
          "https://doi.org/10.1007/bf02172227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.schres.2011.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048447679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2016.12.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050933763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2016.12.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050933763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2016.12.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050933763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2016.12.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050933763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.05.079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051116731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnagi.2016.00247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051235623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.schres.2013.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051819260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2010.10.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051943869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnhum.2013.00921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053193359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpsycho.2007.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053338138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089892903321593063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053459118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.174102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.174102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00363.2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063199728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/155005940003100209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064060180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/155005940003100209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064060180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074764903", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082955063", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.17-11-04302.1997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083089633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-00965-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084537981", 
          "https://doi.org/10.1038/s41598-017-00965-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0175870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085126686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511596889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109374517"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The spatial complexity of neural signals, which was traditionally quantified by omega complexity, varies inversely with the global functional connectivity level across distinct region-of-interests, thus provides a novel approach in functional connectivity analysis. However, the measures in omega complexity are sensitive to the number of neural time-series. Here, normalized spatial complexity was suggested to overcome the above limitation, and was verified by the functional near-infrared spectroscopy (fNIRS) data from a previous published autism spectrum disorder (ASD) research. By this new method, several conclusions consistent with traditional approaches on the pathological mechanisms of ASD were found, i.e., the prefrontal cortex made a major contribution to the hypo-connectivity of young children with ASD. Moreover, some novel findings were also detected (e.g., significantly higher normalized regional spatial complexities of bilateral prefrontal cortices and the variability of normalized local complexity differential of right temporal lobe, and the regional differences of measures in normalized regional spatial complexity), which could not be successfully detected via traditional approaches. These results confirmed the value of this novel approach, and extended the methodology system of functional connectivity. This novel technique could be applied to the neural signal of other neuroimaging techniques and other neurological and cognitive conditions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-26329-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7176985", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5075008", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Normalized spatial complexity analysis of neural signals", 
    "pagination": "7912", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ee92bc489b3fa15dc1bb72b24e0864449c23461dbdc1cca8cf9e24d2c5b40897"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29784971"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-26329-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103996498"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-26329-0", 
      "https://app.dimensions.ai/details/publication/pub.1103996498"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-26329-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-26329-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-26329-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-26329-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-26329-0'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      21 PREDICATES      87 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-26329-0 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nb046e31ffb12445dbf5d3189ab69b2b3
4 schema:citation sg:pub.10.1007/bf01129967
5 sg:pub.10.1007/bf02172227
6 sg:pub.10.1007/bf02447083
7 sg:pub.10.1007/s10548-005-0280-z
8 sg:pub.10.1038/s41598-017-00965-4
9 sg:pub.10.1038/srep16152
10 sg:pub.10.1186/2040-2392-4-1
11 sg:pub.10.1186/2040-2392-5-35
12 sg:pub.10.1186/s13229-015-0052-x
13 https://app.dimensions.ai/details/publication/pub.1074764903
14 https://app.dimensions.ai/details/publication/pub.1082955063
15 https://doi.org/10.1002/hbm.20324
16 https://doi.org/10.1016/0167-2789(85)90011-9
17 https://doi.org/10.1016/j.bandc.2016.07.006
18 https://doi.org/10.1016/j.biopsych.2011.03.040
19 https://doi.org/10.1016/j.conb.2005.03.001
20 https://doi.org/10.1016/j.ijpsycho.2007.02.003
21 https://doi.org/10.1016/j.jneumeth.2007.06.026
22 https://doi.org/10.1016/j.jneumeth.2009.11.010
23 https://doi.org/10.1016/j.neubiorev.2012.02.007
24 https://doi.org/10.1016/j.neurobiolaging.2013.08.018
25 https://doi.org/10.1016/j.neuroimage.2008.12.048
26 https://doi.org/10.1016/j.neuroimage.2009.10.003
27 https://doi.org/10.1016/j.neuroimage.2009.12.011
28 https://doi.org/10.1016/j.neuroimage.2010.10.069
29 https://doi.org/10.1016/j.neuroimage.2013.05.079
30 https://doi.org/10.1016/j.neuroimage.2015.03.057
31 https://doi.org/10.1016/j.neuroimage.2016.12.068
32 https://doi.org/10.1016/j.neuropsychologia.2008.05.016
33 https://doi.org/10.1016/j.rasd.2011.06.008
34 https://doi.org/10.1016/j.schres.2011.06.003
35 https://doi.org/10.1016/j.schres.2013.12.008
36 https://doi.org/10.1016/j.tins.2007.12.005
37 https://doi.org/10.1016/s0006-3223(97)00547-7
38 https://doi.org/10.1016/s0167-8760(99)00044-6
39 https://doi.org/10.1016/s0304-3940(97)00224-3
40 https://doi.org/10.1017/cbo9780511596889
41 https://doi.org/10.1073/pnas.0504136102
42 https://doi.org/10.1073/pnas.0601417103
43 https://doi.org/10.1093/brain/awh199
44 https://doi.org/10.1093/brain/awv051
45 https://doi.org/10.1093/cercor/bhq190
46 https://doi.org/10.1093/scan/nsv021
47 https://doi.org/10.1103/physrevlett.88.174102
48 https://doi.org/10.1117/1.jbo.20.4.046007
49 https://doi.org/10.1152/jn.00363.2016
50 https://doi.org/10.1162/089892903321593063
51 https://doi.org/10.1177/155005940003100209
52 https://doi.org/10.1214/aos/1013699998
53 https://doi.org/10.1364/boe.6.002337
54 https://doi.org/10.1371/journal.pone.0054516
55 https://doi.org/10.1371/journal.pone.0175870
56 https://doi.org/10.1523/jneurosci.17-11-04302.1997
57 https://doi.org/10.1523/jneurosci.4478-13.2014
58 https://doi.org/10.1523/jneurosci.5714-09.2010
59 https://doi.org/10.3389/fnagi.2016.00247
60 https://doi.org/10.3389/fnhum.2010.00176
61 https://doi.org/10.3389/fnhum.2013.00921
62 schema:datePublished 2018-12
63 schema:datePublishedReg 2018-12-01
64 schema:description The spatial complexity of neural signals, which was traditionally quantified by omega complexity, varies inversely with the global functional connectivity level across distinct region-of-interests, thus provides a novel approach in functional connectivity analysis. However, the measures in omega complexity are sensitive to the number of neural time-series. Here, normalized spatial complexity was suggested to overcome the above limitation, and was verified by the functional near-infrared spectroscopy (fNIRS) data from a previous published autism spectrum disorder (ASD) research. By this new method, several conclusions consistent with traditional approaches on the pathological mechanisms of ASD were found, i.e., the prefrontal cortex made a major contribution to the hypo-connectivity of young children with ASD. Moreover, some novel findings were also detected (e.g., significantly higher normalized regional spatial complexities of bilateral prefrontal cortices and the variability of normalized local complexity differential of right temporal lobe, and the regional differences of measures in normalized regional spatial complexity), which could not be successfully detected via traditional approaches. These results confirmed the value of this novel approach, and extended the methodology system of functional connectivity. This novel technique could be applied to the neural signal of other neuroimaging techniques and other neurological and cognitive conditions.
65 schema:genre research_article
66 schema:inLanguage en
67 schema:isAccessibleForFree true
68 schema:isPartOf N6d35e1861168476092eac2d51a4543be
69 N7b5bb96412e94f27b676a9dd56ebd0df
70 sg:journal.1045337
71 schema:name Normalized spatial complexity analysis of neural signals
72 schema:pagination 7912
73 schema:productId N1ab880740d124368ae923b9aefb54e28
74 N3aa8f07ab7984035b490c71254c4313a
75 Na464ae7a581b4cb0a0f3061dd63bd578
76 Nd46c781f9a8a473f85d470244882a9dd
77 Nfa566a1ae43f45f0a0f4d6db8e8ca00a
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103996498
79 https://doi.org/10.1038/s41598-018-26329-0
80 schema:sdDatePublished 2019-04-10T19:21
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N48bd30fbe0ad4bc49530eddc9b9499c4
83 schema:url https://www.nature.com/articles/s41598-018-26329-0
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N1ab880740d124368ae923b9aefb54e28 schema:name nlm_unique_id
88 schema:value 101563288
89 rdf:type schema:PropertyValue
90 N3aa8f07ab7984035b490c71254c4313a schema:name pubmed_id
91 schema:value 29784971
92 rdf:type schema:PropertyValue
93 N48bd30fbe0ad4bc49530eddc9b9499c4 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N6d35e1861168476092eac2d51a4543be schema:volumeNumber 8
96 rdf:type schema:PublicationVolume
97 N7b5bb96412e94f27b676a9dd56ebd0df schema:issueNumber 1
98 rdf:type schema:PublicationIssue
99 N88520fe71efe452fad20d6a9101acd55 rdf:first sg:person.016462323434.44
100 rdf:rest N92acafc94fe941078ee4dad88715b4b4
101 N92acafc94fe941078ee4dad88715b4b4 rdf:first sg:person.0715646435.18
102 rdf:rest rdf:nil
103 Na464ae7a581b4cb0a0f3061dd63bd578 schema:name readcube_id
104 schema:value ee92bc489b3fa15dc1bb72b24e0864449c23461dbdc1cca8cf9e24d2c5b40897
105 rdf:type schema:PropertyValue
106 Nb046e31ffb12445dbf5d3189ab69b2b3 rdf:first sg:person.010244145535.57
107 rdf:rest N88520fe71efe452fad20d6a9101acd55
108 Nd46c781f9a8a473f85d470244882a9dd schema:name doi
109 schema:value 10.1038/s41598-018-26329-0
110 rdf:type schema:PropertyValue
111 Nfa566a1ae43f45f0a0f4d6db8e8ca00a schema:name dimensions_id
112 schema:value pub.1103996498
113 rdf:type schema:PropertyValue
114 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
115 schema:name Psychology and Cognitive Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
118 schema:name Psychology
119 rdf:type schema:DefinedTerm
120 sg:grant.5075008 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-26329-0
121 rdf:type schema:MonetaryGrant
122 sg:grant.7176985 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-26329-0
123 rdf:type schema:MonetaryGrant
124 sg:journal.1045337 schema:issn 2045-2322
125 schema:name Scientific Reports
126 rdf:type schema:Periodical
127 sg:person.010244145535.57 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
128 schema:familyName Jia
129 schema:givenName Huibin
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010244145535.57
131 rdf:type schema:Person
132 sg:person.016462323434.44 schema:affiliation https://www.grid.ac/institutes/grid.440845.9
133 schema:familyName Li
134 schema:givenName Yanwei
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016462323434.44
136 rdf:type schema:Person
137 sg:person.0715646435.18 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
138 schema:familyName Yu
139 schema:givenName Dongchuan
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715646435.18
141 rdf:type schema:Person
142 sg:pub.10.1007/bf01129967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033917895
143 https://doi.org/10.1007/bf01129967
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/bf02172227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047512571
146 https://doi.org/10.1007/bf02172227
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/bf02447083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030681350
149 https://doi.org/10.1007/bf02447083
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s10548-005-0280-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022178790
152 https://doi.org/10.1007/s10548-005-0280-z
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/s41598-017-00965-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084537981
155 https://doi.org/10.1038/s41598-017-00965-4
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/srep16152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012866252
158 https://doi.org/10.1038/srep16152
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/2040-2392-4-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017993936
161 https://doi.org/10.1186/2040-2392-4-1
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/2040-2392-5-35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003530357
164 https://doi.org/10.1186/2040-2392-5-35
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/s13229-015-0052-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042377884
167 https://doi.org/10.1186/s13229-015-0052-x
168 rdf:type schema:CreativeWork
169 https://app.dimensions.ai/details/publication/pub.1074764903 schema:CreativeWork
170 https://app.dimensions.ai/details/publication/pub.1082955063 schema:CreativeWork
171 https://doi.org/10.1002/hbm.20324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025822163
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/0167-2789(85)90011-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030878297
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.bandc.2016.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024701300
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.biopsych.2011.03.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035287721
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.conb.2005.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004492414
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.ijpsycho.2007.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053338138
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.jneumeth.2007.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017750492
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.jneumeth.2009.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035609212
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.neubiorev.2012.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024220408
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.neurobiolaging.2013.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035382360
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.neuroimage.2008.12.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043405684
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.neuroimage.2009.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022342218
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.neuroimage.2009.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019579803
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.neuroimage.2010.10.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051943869
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.neuroimage.2013.05.079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051116731
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.neuroimage.2015.03.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005093407
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.neuroimage.2016.12.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050933763
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.neuropsychologia.2008.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016299392
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.rasd.2011.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027467810
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.schres.2011.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048447679
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.schres.2013.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051819260
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.tins.2007.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034888945
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s0006-3223(97)00547-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047389434
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/s0167-8760(99)00044-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021882143
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/s0304-3940(97)00224-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023768588
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1017/cbo9780511596889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109374517
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1073/pnas.0504136102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004124686
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1073/pnas.0601417103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029386022
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/brain/awh199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010175917
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/brain/awv051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004752203
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/cercor/bhq190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041066439
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/scan/nsv021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001257541
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1103/physrevlett.88.174102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824770
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1117/1.jbo.20.4.046007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005702298
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1152/jn.00363.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063199728
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1162/089892903321593063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053459118
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1177/155005940003100209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064060180
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1214/aos/1013699998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036427477
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1364/boe.6.002337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015017395
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1371/journal.pone.0054516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045367979
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1371/journal.pone.0175870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085126686
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1523/jneurosci.17-11-04302.1997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083089633
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1523/jneurosci.4478-13.2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017897963
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1523/jneurosci.5714-09.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033831906
258 rdf:type schema:CreativeWork
259 https://doi.org/10.3389/fnagi.2016.00247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051235623
260 rdf:type schema:CreativeWork
261 https://doi.org/10.3389/fnhum.2010.00176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037222851
262 rdf:type schema:CreativeWork
263 https://doi.org/10.3389/fnhum.2013.00921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053193359
264 rdf:type schema:CreativeWork
265 https://www.grid.ac/institutes/grid.263826.b schema:alternateName Southeast University
266 schema:name Key Laboratory of Child Development and Learning Science (Ministry of Education), Research Center for Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, Jiangsu, China
267 rdf:type schema:Organization
268 https://www.grid.ac/institutes/grid.440845.9 schema:alternateName Nanjing Xiaozhuang University
269 schema:name College of Preschool Education, Nanjing Xiaozhuang University, Nanjing, Jiangsu, China
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...