Possible causes of data model discrepancy in the temperature history of the last Millennium View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-05-15

AUTHORS

Raphael Neukom, Andrew P. Schurer, Nathan. J. Steiger, Gabriele C. Hegerl

ABSTRACT

Model simulations and proxy-based reconstructions are the main tools for quantifying pre-instrumental climate variations. For some metrics such as Northern Hemisphere mean temperatures, there is remarkable agreement between models and reconstructions. For other diagnostics, such as the regional response to volcanic eruptions, or hemispheric temperature differences, substantial disagreements between data and models have been reported. Here, we assess the potential sources of these discrepancies by comparing 1000-year hemispheric temperature reconstructions based on real-world paleoclimate proxies with climate-model-based pseudoproxies. These pseudoproxy experiments (PPE) indicate that noise inherent in proxy records and the unequal spatial distribution of proxy data are the key factors in explaining the data-model differences. For example, lower inter-hemispheric correlations in reconstructions can be fully accounted for by these factors in the PPE. Noise and data sampling also partly explain the reduced amplitude of the response to external forcing in reconstructions compared to models. For other metrics, such as inter-hemispheric differences, some, although reduced, discrepancy remains. Our results suggest that improving proxy data quality and spatial coverage is the key factor to increase the quality of future climate reconstructions, while the total number of proxy records and reconstruction methodology play a smaller role. More... »

PAGES

7572

References to SciGraph publications

  • 2014-11-11. Establishing the skill of climate field reconstruction techniques for precipitation with pseudoproxy experiments in CLIMATE DYNAMICS
  • 2006-04-01. Climate sensitivity constrained by temperature reconstructions over the past seven centuries in NATURE
  • 1996. Are there optimum sites for global paleotemperature reconstruction? in CLIMATIC VARIATIONS AND FORCING MECHANISMS OF THE LAST 2000 YEARS
  • 1987-11. Global surface-temperature responses to major volcanic eruptions in NATURE
  • 2014-03-30. Inter-hemispheric temperature variability over the past millennium in NATURE CLIMATE CHANGE
  • 2017-07-11. A global multiproxy database for temperature reconstructions of the Common Era in SCIENTIFIC DATA
  • 2016-08-24. Early onset of industrial-era warming across the oceans and continents in NATURE
  • 1987-06. ENSO signal in continental temperature and precipitation records in NATURE
  • 2003-08-29. Estimating signal amplitudes in optimal fingerprinting, part I: theory in CLIMATE DYNAMICS
  • 2013-04-21. Continental-scale temperature variability during the past two millennia in NATURE GEOSCIENCE
  • 2017-01-23. Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records in NATURE GEOSCIENCE
  • 2016-08-08. Role of atmospheric chemistry in the climate impacts of stratospheric volcanic injections in NATURE GEOSCIENCE
  • 2010-03-28. Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries in CLIMATE DYNAMICS
  • 2012-11-25. Tree rings and volcanic cooling in NATURE GEOSCIENCE
  • 2013-02-03. Spectral biases in tree-ring climate proxies in NATURE CLIMATE CHANGE
  • 2013-04-06. Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic Region over the last 2,000 years in CLIMATE DYNAMICS
  • 2010-09. An abrupt drop in Northern Hemisphere sea surface temperature around 1970 in NATURE
  • 2016-09-09. Paradoxical cold conditions during the medieval climate anomaly in the Western Arctic in SCIENTIFIC REPORTS
  • 2010-11-26. An efficient forward model of the climate controls on interannual variation in tree-ring width in CLIMATE DYNAMICS
  • 2015-08-31. Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years in NATURE GEOSCIENCE
  • 2015-06-06. Model-dependent spatial skill in pseudoproxy experiments testing climate field reconstruction methods for the Common Era in CLIMATE DYNAMICS
  • 2010-01-27. Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate in NATURE
  • 2016-04-15. An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes in CLIMATE DYNAMICS
  • 2016-05-03. Reconstructed and simulated temperature asymmetry between continents in both hemispheres over the last centuries in CLIMATE DYNAMICS
  • 2015-10-05. Systematic change in global patterns of streamflow following volcanic eruptions in NATURE GEOSCIENCE
  • 2013-12-22. Small influence of solar variability on climate over the past millennium in NATURE GEOSCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-018-25862-2

    DOI

    http://dx.doi.org/10.1038/s41598-018-25862-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103911363

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29765075


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Oeschger Centre for Climate Change Research and Institute of Geography, University of Bern, Bern, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5734.5", 
              "name": [
                "Oeschger Centre for Climate Change Research and Institute of Geography, University of Bern, Bern, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Neukom", 
            "givenName": "Raphael", 
            "id": "sg:person.014477716327.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014477716327.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Geosciences, University of Edinburgh, Edinburgh, UK", 
              "id": "http://www.grid.ac/institutes/grid.4305.2", 
              "name": [
                "School of Geosciences, University of Edinburgh, Edinburgh, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schurer", 
            "givenName": "Andrew P.", 
            "id": "sg:person.013507620423.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013507620423.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA", 
              "id": "http://www.grid.ac/institutes/grid.473157.3", 
              "name": [
                "Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Steiger", 
            "givenName": "Nathan. J.", 
            "id": "sg:person.016453176443.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016453176443.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Geosciences, University of Edinburgh, Edinburgh, UK", 
              "id": "http://www.grid.ac/institutes/grid.4305.2", 
              "name": [
                "School of Geosciences, University of Edinburgh, Edinburgh, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hegerl", 
            "givenName": "Gabriele C.", 
            "id": "sg:person.0624607120.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624607120.80"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ngeo2875", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074214879", 
              "https://doi.org/10.1038/ngeo2875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023888228", 
              "https://doi.org/10.1038/ngeo2771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033854671", 
              "https://doi.org/10.1038/ngeo2040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049670547", 
              "https://doi.org/10.1038/nclimate1816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sdata.2017.88", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090578763", 
              "https://doi.org/10.1038/sdata.2017.88"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo1797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023589494", 
              "https://doi.org/10.1038/ngeo1797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000598947", 
              "https://doi.org/10.1038/nature04679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003489535", 
              "https://doi.org/10.1038/ngeo2545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052703427", 
              "https://doi.org/10.1038/nature09394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/330365a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011099354", 
              "https://doi.org/10.1038/330365a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-016-3154-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044540181", 
              "https://doi.org/10.1007/s00382-016-3154-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-003-0313-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047305108", 
              "https://doi.org/10.1007/s00382-003-0313-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep32984", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032680633", 
              "https://doi.org/10.1038/srep32984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature19082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023679692", 
              "https://doi.org/10.1038/nature19082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0793-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031707741", 
              "https://doi.org/10.1007/s00382-010-0793-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-61113-1_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053707563", 
              "https://doi.org/10.1007/978-3-642-61113-1_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/327497a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042452886", 
              "https://doi.org/10.1038/327497a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026353676", 
              "https://doi.org/10.1038/ngeo2526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo1645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022776729", 
              "https://doi.org/10.1038/ngeo1645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0945-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014696224", 
              "https://doi.org/10.1007/s00382-010-0945-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-016-3106-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048483139", 
              "https://doi.org/10.1007/s00382-016-3106-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08769", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005583711", 
              "https://doi.org/10.1038/nature08769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1701-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013020666", 
              "https://doi.org/10.1007/s00382-013-1701-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-015-2684-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031777505", 
              "https://doi.org/10.1007/s00382-015-2684-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041547048", 
              "https://doi.org/10.1038/nclimate2174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-014-2388-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029715802", 
              "https://doi.org/10.1007/s00382-014-2388-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-05-15", 
        "datePublishedReg": "2018-05-15", 
        "description": "Model simulations and proxy-based reconstructions are the main tools for quantifying pre-instrumental climate variations. For some metrics such as Northern Hemisphere mean temperatures, there is remarkable agreement between models and reconstructions. For other diagnostics, such as the regional response to volcanic eruptions, or hemispheric temperature differences, substantial disagreements between data and models have been reported. Here, we assess the potential sources of these discrepancies by comparing 1000-year hemispheric temperature reconstructions based on real-world paleoclimate proxies with climate-model-based pseudoproxies. These pseudoproxy experiments (PPE) indicate that noise inherent in proxy records and the unequal spatial distribution of proxy data are the key factors in explaining the data-model differences. For example, lower inter-hemispheric correlations in reconstructions can be fully accounted for by these factors in the PPE. Noise and data sampling also partly explain the reduced amplitude of the response to external forcing in reconstructions compared to models. For other metrics, such as inter-hemispheric differences, some, although reduced, discrepancy remains. Our results suggest that improving proxy data quality and spatial coverage is the key factor to increase the quality of future climate reconstructions, while the total number of proxy records and reconstruction methodology play a smaller role.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-018-25862-2", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5125833", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3852158", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5235046", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3797416", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7057927", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "keywords": [
          "pseudoproxy experiments", 
          "proxy records", 
          "proxy-based reconstructions", 
          "future climate reconstructions", 
          "data-model differences", 
          "data-model discrepancies", 
          "hemispheric temperature difference", 
          "hemispheric temperature reconstructions", 
          "inter-hemispheric differences", 
          "paleoclimate proxies", 
          "climate reconstructions", 
          "temperature reconstructions", 
          "proxy data", 
          "volcanic eruptions", 
          "last millennium", 
          "climate variations", 
          "Northern Hemisphere", 
          "external forcing", 
          "model simulations", 
          "inter-hemispheric correlation", 
          "regional responses", 
          "spatial coverage", 
          "model discrepancy", 
          "spatial distribution", 
          "temperature history", 
          "potential source", 
          "small role", 
          "records", 
          "temperature difference", 
          "reconstruction methodology", 
          "reconstruction", 
          "pseudoproxies", 
          "forcing", 
          "data quality", 
          "remarkable agreement", 
          "eruption", 
          "possible causes", 
          "substantial disagreement", 
          "unequal spatial distribution", 
          "proxy", 
          "hemisphere", 
          "key factors", 
          "discrepancy", 
          "millennium", 
          "data sampling", 
          "variation", 
          "data", 
          "model", 
          "source", 
          "distribution", 
          "temperature", 
          "sampling", 
          "amplitude", 
          "history", 
          "simulations", 
          "correlation", 
          "coverage", 
          "agreement", 
          "differences", 
          "disagreement", 
          "metrics", 
          "response", 
          "factors", 
          "quality", 
          "example", 
          "main tool", 
          "experiments", 
          "results", 
          "methodology", 
          "cause", 
          "tool", 
          "noise", 
          "role", 
          "diagnostics", 
          "total number", 
          "number"
        ], 
        "name": "Possible causes of data model discrepancy in the temperature history of the last Millennium", 
        "pagination": "7572", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103911363"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-018-25862-2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29765075"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-018-25862-2", 
          "https://app.dimensions.ai/details/publication/pub.1103911363"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_780.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-018-25862-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-25862-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-25862-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-25862-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-25862-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    277 TRIPLES      21 PREDICATES      127 URIs      93 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-018-25862-2 schema:about anzsrc-for:04
    2 anzsrc-for:0403
    3 schema:author N72172654062f42888ad862bf2ddfb0fb
    4 schema:citation sg:pub.10.1007/978-3-642-61113-1_29
    5 sg:pub.10.1007/s00382-003-0313-9
    6 sg:pub.10.1007/s00382-010-0793-3
    7 sg:pub.10.1007/s00382-010-0945-5
    8 sg:pub.10.1007/s00382-013-1701-4
    9 sg:pub.10.1007/s00382-014-2388-x
    10 sg:pub.10.1007/s00382-015-2684-0
    11 sg:pub.10.1007/s00382-016-3106-7
    12 sg:pub.10.1007/s00382-016-3154-z
    13 sg:pub.10.1038/327497a0
    14 sg:pub.10.1038/330365a0
    15 sg:pub.10.1038/nature04679
    16 sg:pub.10.1038/nature08769
    17 sg:pub.10.1038/nature09394
    18 sg:pub.10.1038/nature19082
    19 sg:pub.10.1038/nclimate1816
    20 sg:pub.10.1038/nclimate2174
    21 sg:pub.10.1038/ngeo1645
    22 sg:pub.10.1038/ngeo1797
    23 sg:pub.10.1038/ngeo2040
    24 sg:pub.10.1038/ngeo2526
    25 sg:pub.10.1038/ngeo2545
    26 sg:pub.10.1038/ngeo2771
    27 sg:pub.10.1038/ngeo2875
    28 sg:pub.10.1038/sdata.2017.88
    29 sg:pub.10.1038/srep32984
    30 schema:datePublished 2018-05-15
    31 schema:datePublishedReg 2018-05-15
    32 schema:description Model simulations and proxy-based reconstructions are the main tools for quantifying pre-instrumental climate variations. For some metrics such as Northern Hemisphere mean temperatures, there is remarkable agreement between models and reconstructions. For other diagnostics, such as the regional response to volcanic eruptions, or hemispheric temperature differences, substantial disagreements between data and models have been reported. Here, we assess the potential sources of these discrepancies by comparing 1000-year hemispheric temperature reconstructions based on real-world paleoclimate proxies with climate-model-based pseudoproxies. These pseudoproxy experiments (PPE) indicate that noise inherent in proxy records and the unequal spatial distribution of proxy data are the key factors in explaining the data-model differences. For example, lower inter-hemispheric correlations in reconstructions can be fully accounted for by these factors in the PPE. Noise and data sampling also partly explain the reduced amplitude of the response to external forcing in reconstructions compared to models. For other metrics, such as inter-hemispheric differences, some, although reduced, discrepancy remains. Our results suggest that improving proxy data quality and spatial coverage is the key factor to increase the quality of future climate reconstructions, while the total number of proxy records and reconstruction methodology play a smaller role.
    33 schema:genre article
    34 schema:isAccessibleForFree true
    35 schema:isPartOf Na0c2f56e3a53441aa24c478dec196e89
    36 Nf8c15a68e44e47279b8e43672df56113
    37 sg:journal.1045337
    38 schema:keywords Northern Hemisphere
    39 agreement
    40 amplitude
    41 cause
    42 climate reconstructions
    43 climate variations
    44 correlation
    45 coverage
    46 data
    47 data quality
    48 data sampling
    49 data-model differences
    50 data-model discrepancies
    51 diagnostics
    52 differences
    53 disagreement
    54 discrepancy
    55 distribution
    56 eruption
    57 example
    58 experiments
    59 external forcing
    60 factors
    61 forcing
    62 future climate reconstructions
    63 hemisphere
    64 hemispheric temperature difference
    65 hemispheric temperature reconstructions
    66 history
    67 inter-hemispheric correlation
    68 inter-hemispheric differences
    69 key factors
    70 last millennium
    71 main tool
    72 methodology
    73 metrics
    74 millennium
    75 model
    76 model discrepancy
    77 model simulations
    78 noise
    79 number
    80 paleoclimate proxies
    81 possible causes
    82 potential source
    83 proxy
    84 proxy data
    85 proxy records
    86 proxy-based reconstructions
    87 pseudoproxies
    88 pseudoproxy experiments
    89 quality
    90 reconstruction
    91 reconstruction methodology
    92 records
    93 regional responses
    94 remarkable agreement
    95 response
    96 results
    97 role
    98 sampling
    99 simulations
    100 small role
    101 source
    102 spatial coverage
    103 spatial distribution
    104 substantial disagreement
    105 temperature
    106 temperature difference
    107 temperature history
    108 temperature reconstructions
    109 tool
    110 total number
    111 unequal spatial distribution
    112 variation
    113 volcanic eruptions
    114 schema:name Possible causes of data model discrepancy in the temperature history of the last Millennium
    115 schema:pagination 7572
    116 schema:productId N30c1d362aac44e7d881e1397098e407f
    117 N724369abcaab4f79b8438712524e3e86
    118 N8e2ed60d82ce4f4a828900243a1797dc
    119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103911363
    120 https://doi.org/10.1038/s41598-018-25862-2
    121 schema:sdDatePublished 2022-08-04T17:07
    122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    123 schema:sdPublisher N65e4c7655466414d93cd8631090be24b
    124 schema:url https://doi.org/10.1038/s41598-018-25862-2
    125 sgo:license sg:explorer/license/
    126 sgo:sdDataset articles
    127 rdf:type schema:ScholarlyArticle
    128 N30c1d362aac44e7d881e1397098e407f schema:name pubmed_id
    129 schema:value 29765075
    130 rdf:type schema:PropertyValue
    131 N65e4c7655466414d93cd8631090be24b schema:name Springer Nature - SN SciGraph project
    132 rdf:type schema:Organization
    133 N72172654062f42888ad862bf2ddfb0fb rdf:first sg:person.014477716327.24
    134 rdf:rest Nc838c0f8250d4859833da6a485e7733e
    135 N724369abcaab4f79b8438712524e3e86 schema:name doi
    136 schema:value 10.1038/s41598-018-25862-2
    137 rdf:type schema:PropertyValue
    138 N89ec55fd49f945949c96ec7022a5dcaa rdf:first sg:person.016453176443.19
    139 rdf:rest Nada45a1724ad4552ba3e9d2403b38eb3
    140 N8e2ed60d82ce4f4a828900243a1797dc schema:name dimensions_id
    141 schema:value pub.1103911363
    142 rdf:type schema:PropertyValue
    143 Na0c2f56e3a53441aa24c478dec196e89 schema:issueNumber 1
    144 rdf:type schema:PublicationIssue
    145 Nada45a1724ad4552ba3e9d2403b38eb3 rdf:first sg:person.0624607120.80
    146 rdf:rest rdf:nil
    147 Nc838c0f8250d4859833da6a485e7733e rdf:first sg:person.013507620423.16
    148 rdf:rest N89ec55fd49f945949c96ec7022a5dcaa
    149 Nf8c15a68e44e47279b8e43672df56113 schema:volumeNumber 8
    150 rdf:type schema:PublicationVolume
    151 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Earth Sciences
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Geology
    156 rdf:type schema:DefinedTerm
    157 sg:grant.3797416 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-25862-2
    158 rdf:type schema:MonetaryGrant
    159 sg:grant.3852158 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-25862-2
    160 rdf:type schema:MonetaryGrant
    161 sg:grant.5125833 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-25862-2
    162 rdf:type schema:MonetaryGrant
    163 sg:grant.5235046 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-25862-2
    164 rdf:type schema:MonetaryGrant
    165 sg:grant.7057927 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-25862-2
    166 rdf:type schema:MonetaryGrant
    167 sg:journal.1045337 schema:issn 2045-2322
    168 schema:name Scientific Reports
    169 schema:publisher Springer Nature
    170 rdf:type schema:Periodical
    171 sg:person.013507620423.16 schema:affiliation grid-institutes:grid.4305.2
    172 schema:familyName Schurer
    173 schema:givenName Andrew P.
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013507620423.16
    175 rdf:type schema:Person
    176 sg:person.014477716327.24 schema:affiliation grid-institutes:grid.5734.5
    177 schema:familyName Neukom
    178 schema:givenName Raphael
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014477716327.24
    180 rdf:type schema:Person
    181 sg:person.016453176443.19 schema:affiliation grid-institutes:grid.473157.3
    182 schema:familyName Steiger
    183 schema:givenName Nathan. J.
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016453176443.19
    185 rdf:type schema:Person
    186 sg:person.0624607120.80 schema:affiliation grid-institutes:grid.4305.2
    187 schema:familyName Hegerl
    188 schema:givenName Gabriele C.
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624607120.80
    190 rdf:type schema:Person
    191 sg:pub.10.1007/978-3-642-61113-1_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053707563
    192 https://doi.org/10.1007/978-3-642-61113-1_29
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s00382-003-0313-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047305108
    195 https://doi.org/10.1007/s00382-003-0313-9
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s00382-010-0793-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031707741
    198 https://doi.org/10.1007/s00382-010-0793-3
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s00382-010-0945-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014696224
    201 https://doi.org/10.1007/s00382-010-0945-5
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s00382-013-1701-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013020666
    204 https://doi.org/10.1007/s00382-013-1701-4
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s00382-014-2388-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029715802
    207 https://doi.org/10.1007/s00382-014-2388-x
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s00382-015-2684-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031777505
    210 https://doi.org/10.1007/s00382-015-2684-0
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s00382-016-3106-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048483139
    213 https://doi.org/10.1007/s00382-016-3106-7
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s00382-016-3154-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1044540181
    216 https://doi.org/10.1007/s00382-016-3154-z
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/327497a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042452886
    219 https://doi.org/10.1038/327497a0
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/330365a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011099354
    222 https://doi.org/10.1038/330365a0
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nature04679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000598947
    225 https://doi.org/10.1038/nature04679
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nature08769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005583711
    228 https://doi.org/10.1038/nature08769
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nature09394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052703427
    231 https://doi.org/10.1038/nature09394
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nature19082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023679692
    234 https://doi.org/10.1038/nature19082
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nclimate1816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049670547
    237 https://doi.org/10.1038/nclimate1816
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nclimate2174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041547048
    240 https://doi.org/10.1038/nclimate2174
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/ngeo1645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022776729
    243 https://doi.org/10.1038/ngeo1645
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/ngeo1797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023589494
    246 https://doi.org/10.1038/ngeo1797
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/ngeo2040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033854671
    249 https://doi.org/10.1038/ngeo2040
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/ngeo2526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026353676
    252 https://doi.org/10.1038/ngeo2526
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/ngeo2545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003489535
    255 https://doi.org/10.1038/ngeo2545
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/ngeo2771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023888228
    258 https://doi.org/10.1038/ngeo2771
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/ngeo2875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074214879
    261 https://doi.org/10.1038/ngeo2875
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/sdata.2017.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090578763
    264 https://doi.org/10.1038/sdata.2017.88
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/srep32984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032680633
    267 https://doi.org/10.1038/srep32984
    268 rdf:type schema:CreativeWork
    269 grid-institutes:grid.4305.2 schema:alternateName School of Geosciences, University of Edinburgh, Edinburgh, UK
    270 schema:name School of Geosciences, University of Edinburgh, Edinburgh, UK
    271 rdf:type schema:Organization
    272 grid-institutes:grid.473157.3 schema:alternateName Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
    273 schema:name Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
    274 rdf:type schema:Organization
    275 grid-institutes:grid.5734.5 schema:alternateName Oeschger Centre for Climate Change Research and Institute of Geography, University of Bern, Bern, Switzerland
    276 schema:name Oeschger Centre for Climate Change Research and Institute of Geography, University of Bern, Bern, Switzerland
    277 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...