Characteristics of three organic matter pore types in the Wufeng-Longmaxi Shale of the Sichuan Basin, Southwest China View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Haikuan Nie, Zhijun Jin, Jinchuan Zhang

ABSTRACT

A consensus has been reached through previous studies that organic matter (OM) pores are crucial to porosity in many shale gas reservoirs; however, their origins and types remain controversial. Here, we report the OM pore types hosted in algae, bitumen, graptolite and other fossil fragments in the Wufeng-Longmaxi Formations of the Sichuan Basin, Southwest China. Algae types mainly include multicellular algae, unicellular algae, etc. The OM pores in multicellular algae usually exhibit irregular, bubble-like, spherical and/or elliptical profiles, and their diameters vary between 300 and 800 nm. The shapes of the OM pores in unicellular algae are either irregular or oval, and the pores are hundreds of nanometres in size. The pores associated with solid bitumen are sporadic, isolated and variable in size, ranging from 500 nm to 3 μm. The pores in the graptolite, sponge spicule, radiolarian and other fossil fragments are much smaller and fewer. The pores may only have developed in the surface of the graptolite and bitumen by filling in the biological cavity of the sponge spicule. These new findings provide stronger evidence that multicellular algae are the main hydrocarbon generating organisms of OM pores development. More... »

PAGES

7014

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-25104-5

DOI

http://dx.doi.org/10.1038/s41598-018-25104-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103702844

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29725082


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sinopec (China)", 
          "id": "https://www.grid.ac/institutes/grid.418531.a", 
          "name": [
            "State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, 100083, Beijing, China", 
            "Petroleum Exploration and Production Research Institute, China Petroleum & Chemical Corporation (SINOPEC), 100083, Beijing, China", 
            "Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nie", 
        "givenName": "Haikuan", 
        "id": "sg:person.015132603674.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015132603674.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sinopec (China)", 
          "id": "https://www.grid.ac/institutes/grid.418531.a", 
          "name": [
            "State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, 100083, Beijing, China", 
            "Petroleum Exploration and Production Research Institute, China Petroleum & Chemical Corporation (SINOPEC), 100083, Beijing, China", 
            "Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Zhijun", 
        "id": "sg:person.010761151011.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010761151011.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China University of Geosciences", 
          "id": "https://www.grid.ac/institutes/grid.162107.3", 
          "name": [
            "Energy Resource School, China University of Geosciences (Beijing), 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jinchuan", 
        "id": "sg:person.016446463403.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016446463403.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.coal.2013.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000281827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/g33639.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005186673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orggeochem.2015.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012733537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2014.03.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019417036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jngse.2016.10.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020424819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coal.2012.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020497169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coal.2014.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023784115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.marpetgeo.2011.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031726991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-6724.12611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034728517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coal.2015.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037082845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coal.2012.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039667418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coal.2015.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039730631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0146-6380(95)90013-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041980487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-6724.12752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045795916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orggeochem.2007.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050792921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/cjes-2015-0210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062888587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/02141312091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064919896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/03051514151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064919986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/03301110145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064920095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/04011312194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064922109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/04111110201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064922172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/04151615092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064922185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/07231212048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064922628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/08151110188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064922713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/08171111061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064922717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/12011111129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064925098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/61eeddbe-173e-11d7-8645000102c1865d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064944496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/8626c389-173b-11d7-8645000102c1865d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064953492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2110/jsr.2009.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068916365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2110/jsr.2014.75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068916711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/09221616069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085666572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jnn.2017.14425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086008933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jmi.12576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090307857"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "A consensus has been reached through previous studies that organic matter (OM) pores are crucial to porosity in many shale gas reservoirs; however, their origins and types remain controversial. Here, we report the OM pore types hosted in algae, bitumen, graptolite and other fossil fragments in the Wufeng-Longmaxi Formations of the Sichuan Basin, Southwest China. Algae types mainly include multicellular algae, unicellular algae, etc. The OM pores in multicellular algae usually exhibit irregular, bubble-like, spherical and/or elliptical profiles, and their diameters vary between 300 and 800\u2009nm. The shapes of the OM pores in unicellular algae are either irregular or oval, and the pores are hundreds of nanometres in size. The pores associated with solid bitumen are sporadic, isolated and variable in size, ranging from 500\u2009nm to 3\u2009\u03bcm. The pores in the graptolite, sponge spicule, radiolarian and other fossil fragments are much smaller and fewer. The pores may only have developed in the surface of the graptolite and bitumen by filling in the biological cavity of the sponge spicule. These new findings provide stronger evidence that multicellular algae are the main hydrocarbon generating organisms of OM pores development.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-25104-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6993075", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Characteristics of three organic matter pore types in the Wufeng-Longmaxi Shale of the Sichuan Basin, Southwest China", 
    "pagination": "7014", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3003d7ff6e6a84f68e3dd3ceea23ee4029f8b3598af4ee8272195b48935587f9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29725082"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-25104-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103702844"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-25104-5", 
      "https://app.dimensions.ai/details/publication/pub.1103702844"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-25104-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-25104-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-25104-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-25104-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-25104-5'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-25104-5 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Neef8630607a6440591f168bdb06e704e
4 schema:citation https://doi.org/10.1016/0146-6380(95)90013-6
5 https://doi.org/10.1016/j.coal.2012.04.010
6 https://doi.org/10.1016/j.coal.2012.08.004
7 https://doi.org/10.1016/j.coal.2013.11.012
8 https://doi.org/10.1016/j.coal.2014.08.012
9 https://doi.org/10.1016/j.coal.2015.05.011
10 https://doi.org/10.1016/j.coal.2015.11.014
11 https://doi.org/10.1016/j.fuel.2014.03.058
12 https://doi.org/10.1016/j.jngse.2016.10.044
13 https://doi.org/10.1016/j.marpetgeo.2011.05.010
14 https://doi.org/10.1016/j.orggeochem.2007.01.001
15 https://doi.org/10.1016/j.orggeochem.2015.07.010
16 https://doi.org/10.1111/1755-6724.12611
17 https://doi.org/10.1111/1755-6724.12752
18 https://doi.org/10.1111/jmi.12576
19 https://doi.org/10.1130/g33639.1
20 https://doi.org/10.1139/cjes-2015-0210
21 https://doi.org/10.1166/jnn.2017.14425
22 https://doi.org/10.1306/02141312091
23 https://doi.org/10.1306/03051514151
24 https://doi.org/10.1306/03301110145
25 https://doi.org/10.1306/04011312194
26 https://doi.org/10.1306/04111110201
27 https://doi.org/10.1306/04151615092
28 https://doi.org/10.1306/07231212048
29 https://doi.org/10.1306/08151110188
30 https://doi.org/10.1306/08171111061
31 https://doi.org/10.1306/09221616069
32 https://doi.org/10.1306/12011111129
33 https://doi.org/10.1306/61eeddbe-173e-11d7-8645000102c1865d
34 https://doi.org/10.1306/8626c389-173b-11d7-8645000102c1865d
35 https://doi.org/10.2110/jsr.2009.092
36 https://doi.org/10.2110/jsr.2014.75
37 schema:datePublished 2018-12
38 schema:datePublishedReg 2018-12-01
39 schema:description A consensus has been reached through previous studies that organic matter (OM) pores are crucial to porosity in many shale gas reservoirs; however, their origins and types remain controversial. Here, we report the OM pore types hosted in algae, bitumen, graptolite and other fossil fragments in the Wufeng-Longmaxi Formations of the Sichuan Basin, Southwest China. Algae types mainly include multicellular algae, unicellular algae, etc. The OM pores in multicellular algae usually exhibit irregular, bubble-like, spherical and/or elliptical profiles, and their diameters vary between 300 and 800 nm. The shapes of the OM pores in unicellular algae are either irregular or oval, and the pores are hundreds of nanometres in size. The pores associated with solid bitumen are sporadic, isolated and variable in size, ranging from 500 nm to 3 μm. The pores in the graptolite, sponge spicule, radiolarian and other fossil fragments are much smaller and fewer. The pores may only have developed in the surface of the graptolite and bitumen by filling in the biological cavity of the sponge spicule. These new findings provide stronger evidence that multicellular algae are the main hydrocarbon generating organisms of OM pores development.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N2bd5992cf6024e2aaaeb57aa0aa9931f
44 N99b2ba31b14b4cbaae98129316524a94
45 sg:journal.1045337
46 schema:name Characteristics of three organic matter pore types in the Wufeng-Longmaxi Shale of the Sichuan Basin, Southwest China
47 schema:pagination 7014
48 schema:productId N4cb6799e745d476a810b9019462f2361
49 N53e8c8c5efb94e74815ff784fca5fae0
50 N80fcd686a39d444b845320abbf20575d
51 Nea160eee8b4742afadb950507bf1b50a
52 Nf1505a119c814f85b2e6993c465531b1
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103702844
54 https://doi.org/10.1038/s41598-018-25104-5
55 schema:sdDatePublished 2019-04-10T16:38
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N5df4bdc35d404821b213fa1e73d6262b
58 schema:url https://www.nature.com/articles/s41598-018-25104-5
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N219129b578124dbcb305d3c9ad2cf110 rdf:first sg:person.010761151011.10
63 rdf:rest N98b088a030b04cbca47614970854adb7
64 N2bd5992cf6024e2aaaeb57aa0aa9931f schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 N4cb6799e745d476a810b9019462f2361 schema:name doi
67 schema:value 10.1038/s41598-018-25104-5
68 rdf:type schema:PropertyValue
69 N53e8c8c5efb94e74815ff784fca5fae0 schema:name pubmed_id
70 schema:value 29725082
71 rdf:type schema:PropertyValue
72 N5df4bdc35d404821b213fa1e73d6262b schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N80fcd686a39d444b845320abbf20575d schema:name nlm_unique_id
75 schema:value 101563288
76 rdf:type schema:PropertyValue
77 N98b088a030b04cbca47614970854adb7 rdf:first sg:person.016446463403.73
78 rdf:rest rdf:nil
79 N99b2ba31b14b4cbaae98129316524a94 schema:volumeNumber 8
80 rdf:type schema:PublicationVolume
81 Nea160eee8b4742afadb950507bf1b50a schema:name dimensions_id
82 schema:value pub.1103702844
83 rdf:type schema:PropertyValue
84 Neef8630607a6440591f168bdb06e704e rdf:first sg:person.015132603674.78
85 rdf:rest N219129b578124dbcb305d3c9ad2cf110
86 Nf1505a119c814f85b2e6993c465531b1 schema:name readcube_id
87 schema:value 3003d7ff6e6a84f68e3dd3ceea23ee4029f8b3598af4ee8272195b48935587f9
88 rdf:type schema:PropertyValue
89 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
90 schema:name Engineering
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
93 schema:name Chemical Engineering
94 rdf:type schema:DefinedTerm
95 sg:grant.6993075 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-25104-5
96 rdf:type schema:MonetaryGrant
97 sg:journal.1045337 schema:issn 2045-2322
98 schema:name Scientific Reports
99 rdf:type schema:Periodical
100 sg:person.010761151011.10 schema:affiliation https://www.grid.ac/institutes/grid.418531.a
101 schema:familyName Jin
102 schema:givenName Zhijun
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010761151011.10
104 rdf:type schema:Person
105 sg:person.015132603674.78 schema:affiliation https://www.grid.ac/institutes/grid.418531.a
106 schema:familyName Nie
107 schema:givenName Haikuan
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015132603674.78
109 rdf:type schema:Person
110 sg:person.016446463403.73 schema:affiliation https://www.grid.ac/institutes/grid.162107.3
111 schema:familyName Zhang
112 schema:givenName Jinchuan
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016446463403.73
114 rdf:type schema:Person
115 https://doi.org/10.1016/0146-6380(95)90013-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041980487
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.coal.2012.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039667418
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.coal.2012.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020497169
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.coal.2013.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000281827
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.coal.2014.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023784115
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.coal.2015.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039730631
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.coal.2015.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037082845
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.fuel.2014.03.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019417036
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.jngse.2016.10.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020424819
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.marpetgeo.2011.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031726991
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.orggeochem.2007.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050792921
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.orggeochem.2015.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012733537
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1111/1755-6724.12611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034728517
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1111/1755-6724.12752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045795916
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1111/jmi.12576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090307857
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1130/g33639.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005186673
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1139/cjes-2015-0210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062888587
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1166/jnn.2017.14425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086008933
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1306/02141312091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064919896
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1306/03051514151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064919986
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1306/03301110145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064920095
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1306/04011312194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064922109
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1306/04111110201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064922172
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1306/04151615092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064922185
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1306/07231212048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064922628
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1306/08151110188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064922713
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1306/08171111061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064922717
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1306/09221616069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085666572
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1306/12011111129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064925098
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1306/61eeddbe-173e-11d7-8645000102c1865d schema:sameAs https://app.dimensions.ai/details/publication/pub.1064944496
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1306/8626c389-173b-11d7-8645000102c1865d schema:sameAs https://app.dimensions.ai/details/publication/pub.1064953492
176 rdf:type schema:CreativeWork
177 https://doi.org/10.2110/jsr.2009.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068916365
178 rdf:type schema:CreativeWork
179 https://doi.org/10.2110/jsr.2014.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068916711
180 rdf:type schema:CreativeWork
181 https://www.grid.ac/institutes/grid.162107.3 schema:alternateName China University of Geosciences
182 schema:name Energy Resource School, China University of Geosciences (Beijing), 100083, Beijing, China
183 rdf:type schema:Organization
184 https://www.grid.ac/institutes/grid.418531.a schema:alternateName Sinopec (China)
185 schema:name Petroleum Exploration and Production Research Institute, China Petroleum & Chemical Corporation (SINOPEC), 100083, Beijing, China
186 Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production, 100083, Beijing, China
187 State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, 100083, Beijing, China
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...