Computational Protein Design with Deep Learning Neural Networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Jingxue Wang, Huali Cao, John Z. H. Zhang, Yifei Qi

ABSTRACT

Computational protein design has a wide variety of applications. Despite its remarkable success, designing a protein for a given structure and function is still a challenging task. On the other hand, the number of solved protein structures is rapidly increasing while the number of unique protein folds has reached a steady number, suggesting more structural information is being accumulated on each fold. Deep learning neural network is a powerful method to learn such big data set and has shown superior performance in many machine learning fields. In this study, we applied the deep learning neural network approach to computational protein design for predicting the probability of 20 natural amino acids on each residue in a protein. A large set of protein structures was collected and a multi-layer neural network was constructed. A number of structural properties were extracted as input features and the best network achieved an accuracy of 38.3%. Using the network output as residue type restraints improves the average sequence identity in designing three natural proteins using Rosetta. Moreover, the predictions from our network show ~3% higher sequence identity than a previous method. Results from this study may benefit further development of computational protein design methods. More... »

PAGES

6349

References to SciGraph publications

  • 2015-12. Rational design of α-helical tandem repeat proteins with closed architectures in NATURE
  • 2008-05-08. Kemp elimination catalysts by computational enzyme design in NATURE
  • 2014-02. Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface in NATURE BIOTECHNOLOGY
  • 2016-10. Accurate de novo design of hyperstable constrained peptides in NATURE
  • 2016-05. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields in SCIENTIFIC REPORTS
  • 2016-07. Design of a hyperstable 60-subunit protein icosahedron in NATURE
  • 2014-12. Protein design with a comprehensive statistical energy function and boosted by experimental selection for foldability in NATURE COMMUNICATIONS
  • 2014-06. Accurate design of co-assembling multi-component protein nanomaterials in NATURE
  • 2016-01. Mastering the game of Go with deep neural networks and tree search in NATURE
  • 2014-02-05. Proof of principle for epitope-focused vaccine design in NATURE
  • 2013-09. Computational design of ligand-binding proteins with high affinity and selectivity in NATURE
  • 2014-03. A protein engineered to bind uranyl selectively and with femtomolar affinity in NATURE CHEMISTRY
  • 2017. Computational Protein Design Under a Given Backbone Structure with the ABACUS Statistical Energy Function in COMPUTATIONAL PROTEIN DESIGN
  • 2016-09. The coming of age of de novo protein design in NATURE
  • 2017-12. Sequence-based prediction of protein protein interaction using a deep-learning algorithm in BMC BIOINFORMATICS
  • 2015-09. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning in SCIENTIFIC REPORTS
  • 2015-05. Deep learning in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-018-24760-x

    DOI

    http://dx.doi.org/10.1038/s41598-018-24760-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103494196

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29679026


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "East China Normal University", 
              "id": "https://www.grid.ac/institutes/grid.22069.3f", 
              "name": [
                "Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200062, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Jingxue", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "East China Normal University", 
              "id": "https://www.grid.ac/institutes/grid.22069.3f", 
              "name": [
                "Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200062, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cao", 
            "givenName": "Huali", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanxi University", 
              "id": "https://www.grid.ac/institutes/grid.163032.5", 
              "name": [
                "Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200062, Shanghai, China", 
                "NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 200062, Shanghai, China", 
                "Department of Chemistry, New York University, NY, 10003, NY, USA", 
                "Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, Shanxi, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "John Z. H.", 
            "id": "sg:person.01262112467.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262112467.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "East China Normal University", 
              "id": "https://www.grid.ac/institutes/grid.22069.3f", 
              "name": [
                "Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200062, Shanghai, China", 
                "NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 200062, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Qi", 
            "givenName": "Yifei", 
            "id": "sg:person.0760507740.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760507740.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.3389/fenvs.2015.00080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000711888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.24620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000961490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.24620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000961490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002491410", 
              "https://doi.org/10.1038/ncomms6330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004967150", 
              "https://doi.org/10.1038/nbt.2797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2005.10.074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005332837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2015.12.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005352484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1152692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005541935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja107487b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006835825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja107487b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006835825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006905519", 
              "https://doi.org/10.1038/nature13404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2016.06.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008360121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010020120", 
              "https://doi.org/10.1038/nature14539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1005324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010491660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep11476", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010621663", 
              "https://doi.org/10.1038/srep11476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1110/ps.0217002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011292273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1000002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014059627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(86)90520-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014237787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.str.2011.03.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014820431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jctc.6b00090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017556228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pro.2892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020935670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1261172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021653814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btk023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023318788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature19946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023334970", 
              "https://doi.org/10.1038/nature19946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/protein/12.2.85", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023574386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts475", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024532439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature19791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026550462", 
              "https://doi.org/10.1038/nature19791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0403255101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026887299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2016.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027248041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027980204", 
              "https://doi.org/10.1038/nature06879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aaa9897", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028884052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029123725", 
              "https://doi.org/10.1038/nature12443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2007.03.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029491614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2016.11.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029714528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.str.2016.02.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031222589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.str.2016.02.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031222589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12966", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031434303", 
              "https://doi.org/10.1038/nature12966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aaf8818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031690101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcc.21968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034575165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/28.1.235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035055456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1390156.1390177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035788679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep18962", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036395831", 
              "https://doi.org/10.1038/srep18962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2016.05.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036877320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039427823", 
              "https://doi.org/10.1038/nature16961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041436848", 
              "https://doi.org/10.1038/nature16191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1219364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042424531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.1856", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042973312", 
              "https://doi.org/10.1038/nchem.1856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts598", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043549968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jsb.2016.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045582456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jcim.5b00238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045760688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-381270-4.00019-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046182923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature18010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046561326", 
              "https://doi.org/10.1038/nature18010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/25.17.3389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047265454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1089427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047464076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.str.2010.06.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049970755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-biophys-083012-130315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050694666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-6637-0_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051289644", 
              "https://doi.org/10.1007/978-1-4939-6637-0_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.340230412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052245066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.340230412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052245066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cb500759p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055226697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcc.24764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084013014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jcim.6b00740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084509076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-017-1700-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085594900", 
              "https://doi.org/10.1186/s12859-017-1700-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-017-1700-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085594900", 
              "https://doi.org/10.1186/s12859-017-1700-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Computational protein design has a wide variety of applications. Despite its remarkable success, designing a protein for a given structure and function is still a challenging task. On the other hand, the number of solved protein structures is rapidly increasing while the number of unique protein folds has reached a steady number, suggesting more structural information is being accumulated on each fold. Deep learning neural network is a powerful method to learn such big data set and has shown superior performance in many machine learning fields. In this study, we applied the deep learning neural network approach to computational protein design for predicting the probability of 20 natural amino acids on each residue in a protein. A large set of protein structures was collected and a multi-layer neural network was constructed. A number of structural properties were extracted as input features and the best network achieved an accuracy of 38.3%. Using the network output as residue type restraints improves the average sequence identity in designing three natural proteins using Rosetta. Moreover, the predictions from our network show ~3% higher sequence identity than a previous method. Results from this study may benefit further development of computational protein design methods.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-018-24760-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "Computational Protein Design with Deep Learning Neural Networks", 
        "pagination": "6349", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "aa85b8624e81cd2861fc693b8ee3f79d87eccae5bfa5fcb68427f6474107690f"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29679026"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-018-24760-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103494196"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-018-24760-x", 
          "https://app.dimensions.ai/details/publication/pub.1103494196"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T21:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000494.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-018-24760-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-24760-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-24760-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-24760-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-24760-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    288 TRIPLES      21 PREDICATES      88 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-018-24760-x schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N07245131694b40dc9e016eee329c37c8
    4 schema:citation sg:pub.10.1007/978-1-4939-6637-0_10
    5 sg:pub.10.1038/nature06879
    6 sg:pub.10.1038/nature12443
    7 sg:pub.10.1038/nature12966
    8 sg:pub.10.1038/nature13404
    9 sg:pub.10.1038/nature14539
    10 sg:pub.10.1038/nature16191
    11 sg:pub.10.1038/nature16961
    12 sg:pub.10.1038/nature18010
    13 sg:pub.10.1038/nature19791
    14 sg:pub.10.1038/nature19946
    15 sg:pub.10.1038/nbt.2797
    16 sg:pub.10.1038/nchem.1856
    17 sg:pub.10.1038/ncomms6330
    18 sg:pub.10.1038/srep11476
    19 sg:pub.10.1038/srep18962
    20 sg:pub.10.1186/s12859-017-1700-2
    21 https://doi.org/10.1002/jcc.21968
    22 https://doi.org/10.1002/jcc.24764
    23 https://doi.org/10.1002/pro.2892
    24 https://doi.org/10.1002/prot.24620
    25 https://doi.org/10.1002/prot.340230412
    26 https://doi.org/10.1016/0022-2836(86)90520-6
    27 https://doi.org/10.1016/b978-0-12-381270-4.00019-6
    28 https://doi.org/10.1016/j.jmb.2005.10.074
    29 https://doi.org/10.1016/j.jsb.2016.08.002
    30 https://doi.org/10.1016/j.sbi.2007.03.006
    31 https://doi.org/10.1016/j.sbi.2015.12.004
    32 https://doi.org/10.1016/j.sbi.2016.04.002
    33 https://doi.org/10.1016/j.sbi.2016.05.007
    34 https://doi.org/10.1016/j.sbi.2016.06.013
    35 https://doi.org/10.1016/j.sbi.2016.11.021
    36 https://doi.org/10.1016/j.str.2010.06.010
    37 https://doi.org/10.1016/j.str.2011.03.019
    38 https://doi.org/10.1016/j.str.2016.02.013
    39 https://doi.org/10.1021/acs.jcim.5b00238
    40 https://doi.org/10.1021/acs.jcim.6b00740
    41 https://doi.org/10.1021/acs.jctc.6b00090
    42 https://doi.org/10.1021/cb500759p
    43 https://doi.org/10.1021/ja107487b
    44 https://doi.org/10.1073/pnas.0403255101
    45 https://doi.org/10.1093/bioinformatics/btk023
    46 https://doi.org/10.1093/bioinformatics/bts475
    47 https://doi.org/10.1093/bioinformatics/bts598
    48 https://doi.org/10.1093/nar/25.17.3389
    49 https://doi.org/10.1093/nar/28.1.235
    50 https://doi.org/10.1093/protein/12.2.85
    51 https://doi.org/10.1110/ps.0217002
    52 https://doi.org/10.1126/science.1089427
    53 https://doi.org/10.1126/science.1152692
    54 https://doi.org/10.1126/science.1219364
    55 https://doi.org/10.1126/science.1261172
    56 https://doi.org/10.1126/science.aaa9897
    57 https://doi.org/10.1126/science.aaf8818
    58 https://doi.org/10.1145/1390156.1390177
    59 https://doi.org/10.1146/annurev-biophys-083012-130315
    60 https://doi.org/10.1371/journal.pcbi.1000002
    61 https://doi.org/10.1371/journal.pcbi.1005324
    62 https://doi.org/10.3389/fenvs.2015.00080
    63 schema:datePublished 2018-12
    64 schema:datePublishedReg 2018-12-01
    65 schema:description Computational protein design has a wide variety of applications. Despite its remarkable success, designing a protein for a given structure and function is still a challenging task. On the other hand, the number of solved protein structures is rapidly increasing while the number of unique protein folds has reached a steady number, suggesting more structural information is being accumulated on each fold. Deep learning neural network is a powerful method to learn such big data set and has shown superior performance in many machine learning fields. In this study, we applied the deep learning neural network approach to computational protein design for predicting the probability of 20 natural amino acids on each residue in a protein. A large set of protein structures was collected and a multi-layer neural network was constructed. A number of structural properties were extracted as input features and the best network achieved an accuracy of 38.3%. Using the network output as residue type restraints improves the average sequence identity in designing three natural proteins using Rosetta. Moreover, the predictions from our network show ~3% higher sequence identity than a previous method. Results from this study may benefit further development of computational protein design methods.
    66 schema:genre research_article
    67 schema:inLanguage en
    68 schema:isAccessibleForFree true
    69 schema:isPartOf Na552d57a9a524d8480cdbd4fc882ca39
    70 Nf38a06ece82449caa9d46ef09919383e
    71 sg:journal.1045337
    72 schema:name Computational Protein Design with Deep Learning Neural Networks
    73 schema:pagination 6349
    74 schema:productId N02b9ca6751a14714a4be826cc27b6c7b
    75 N421f2e508a2f4981b7a9854c3533ad93
    76 N4418c101f26042f2b015838ecdd06be5
    77 Naa663ca7df014a73b0bcd0b8d344b311
    78 Nf2db28de0fa0498284c12d4e53cddaf0
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103494196
    80 https://doi.org/10.1038/s41598-018-24760-x
    81 schema:sdDatePublished 2019-04-10T21:33
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher N95e0560b96994024b1f9aa5d864968cd
    84 schema:url https://www.nature.com/articles/s41598-018-24760-x
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N02b9ca6751a14714a4be826cc27b6c7b schema:name readcube_id
    89 schema:value aa85b8624e81cd2861fc693b8ee3f79d87eccae5bfa5fcb68427f6474107690f
    90 rdf:type schema:PropertyValue
    91 N07245131694b40dc9e016eee329c37c8 rdf:first N694c5d71e8e147bf982ee037a22b1354
    92 rdf:rest N16f0fff7a97a4aaf9580391705f1d6e4
    93 N09f4231f051f47c39a5c8e898d134257 rdf:first sg:person.0760507740.37
    94 rdf:rest rdf:nil
    95 N16f0fff7a97a4aaf9580391705f1d6e4 rdf:first N8b25172fc8634a5d948c1ea330ad1965
    96 rdf:rest N2bca718aefdc472ea3dea0c95edeb163
    97 N2bca718aefdc472ea3dea0c95edeb163 rdf:first sg:person.01262112467.60
    98 rdf:rest N09f4231f051f47c39a5c8e898d134257
    99 N421f2e508a2f4981b7a9854c3533ad93 schema:name dimensions_id
    100 schema:value pub.1103494196
    101 rdf:type schema:PropertyValue
    102 N4418c101f26042f2b015838ecdd06be5 schema:name nlm_unique_id
    103 schema:value 101563288
    104 rdf:type schema:PropertyValue
    105 N694c5d71e8e147bf982ee037a22b1354 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
    106 schema:familyName Wang
    107 schema:givenName Jingxue
    108 rdf:type schema:Person
    109 N8b25172fc8634a5d948c1ea330ad1965 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
    110 schema:familyName Cao
    111 schema:givenName Huali
    112 rdf:type schema:Person
    113 N95e0560b96994024b1f9aa5d864968cd schema:name Springer Nature - SN SciGraph project
    114 rdf:type schema:Organization
    115 Na552d57a9a524d8480cdbd4fc882ca39 schema:issueNumber 1
    116 rdf:type schema:PublicationIssue
    117 Naa663ca7df014a73b0bcd0b8d344b311 schema:name pubmed_id
    118 schema:value 29679026
    119 rdf:type schema:PropertyValue
    120 Nf2db28de0fa0498284c12d4e53cddaf0 schema:name doi
    121 schema:value 10.1038/s41598-018-24760-x
    122 rdf:type schema:PropertyValue
    123 Nf38a06ece82449caa9d46ef09919383e schema:volumeNumber 8
    124 rdf:type schema:PublicationVolume
    125 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Information and Computing Sciences
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Artificial Intelligence and Image Processing
    130 rdf:type schema:DefinedTerm
    131 sg:journal.1045337 schema:issn 2045-2322
    132 schema:name Scientific Reports
    133 rdf:type schema:Periodical
    134 sg:person.01262112467.60 schema:affiliation https://www.grid.ac/institutes/grid.163032.5
    135 schema:familyName Zhang
    136 schema:givenName John Z. H.
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262112467.60
    138 rdf:type schema:Person
    139 sg:person.0760507740.37 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
    140 schema:familyName Qi
    141 schema:givenName Yifei
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760507740.37
    143 rdf:type schema:Person
    144 sg:pub.10.1007/978-1-4939-6637-0_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051289644
    145 https://doi.org/10.1007/978-1-4939-6637-0_10
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1038/nature06879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027980204
    148 https://doi.org/10.1038/nature06879
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1038/nature12443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029123725
    151 https://doi.org/10.1038/nature12443
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1038/nature12966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031434303
    154 https://doi.org/10.1038/nature12966
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1038/nature13404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006905519
    157 https://doi.org/10.1038/nature13404
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
    160 https://doi.org/10.1038/nature14539
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1038/nature16191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041436848
    163 https://doi.org/10.1038/nature16191
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/nature16961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039427823
    166 https://doi.org/10.1038/nature16961
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/nature18010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046561326
    169 https://doi.org/10.1038/nature18010
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/nature19791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026550462
    172 https://doi.org/10.1038/nature19791
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/nature19946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023334970
    175 https://doi.org/10.1038/nature19946
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/nbt.2797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004967150
    178 https://doi.org/10.1038/nbt.2797
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/nchem.1856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042973312
    181 https://doi.org/10.1038/nchem.1856
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/ncomms6330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002491410
    184 https://doi.org/10.1038/ncomms6330
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/srep11476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010621663
    187 https://doi.org/10.1038/srep11476
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/srep18962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036395831
    190 https://doi.org/10.1038/srep18962
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1186/s12859-017-1700-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085594900
    193 https://doi.org/10.1186/s12859-017-1700-2
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1002/jcc.21968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034575165
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1002/jcc.24764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084013014
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1002/pro.2892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020935670
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1002/prot.24620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000961490
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1002/prot.340230412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052245066
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/0022-2836(86)90520-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014237787
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/b978-0-12-381270-4.00019-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046182923
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1016/j.jmb.2005.10.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005332837
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1016/j.jsb.2016.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045582456
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1016/j.sbi.2007.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029491614
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1016/j.sbi.2015.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005352484
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1016/j.sbi.2016.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027248041
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1016/j.sbi.2016.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036877320
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1016/j.sbi.2016.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008360121
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1016/j.sbi.2016.11.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029714528
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1016/j.str.2010.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049970755
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1016/j.str.2011.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014820431
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1016/j.str.2016.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031222589
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1021/acs.jcim.5b00238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045760688
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1021/acs.jcim.6b00740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084509076
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1021/acs.jctc.6b00090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017556228
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1021/cb500759p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055226697
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1021/ja107487b schema:sameAs https://app.dimensions.ai/details/publication/pub.1006835825
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1073/pnas.0403255101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026887299
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1093/bioinformatics/btk023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023318788
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1093/bioinformatics/bts475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024532439
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1093/bioinformatics/bts598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043549968
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1093/nar/28.1.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035055456
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1093/protein/12.2.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023574386
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1110/ps.0217002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011292273
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1126/science.1089427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047464076
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1126/science.1152692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005541935
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1126/science.1219364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042424531
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1126/science.1261172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021653814
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1126/science.aaa9897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028884052
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1126/science.aaf8818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031690101
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1145/1390156.1390177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035788679
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1146/annurev-biophys-083012-130315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050694666
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1371/journal.pcbi.1000002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014059627
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1371/journal.pcbi.1005324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010491660
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.3389/fenvs.2015.00080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000711888
    278 rdf:type schema:CreativeWork
    279 https://www.grid.ac/institutes/grid.163032.5 schema:alternateName Shanxi University
    280 schema:name Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, Shanxi, China
    281 Department of Chemistry, New York University, NY, 10003, NY, USA
    282 NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 200062, Shanghai, China
    283 Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200062, Shanghai, China
    284 rdf:type schema:Organization
    285 https://www.grid.ac/institutes/grid.22069.3f schema:alternateName East China Normal University
    286 schema:name NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 200062, Shanghai, China
    287 Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200062, Shanghai, China
    288 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...