Diffusion-localization transition caused by nonlinear transport on complex networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Koutarou Tamura, Hideki Takayasu, Misako Takayasu

ABSTRACT

We analyzed nonlinear transport as defined for directed complex networks, where the flux from one node to a neighboring node is given preferentially according to the scalar quantities at the neighbor nodes. This is known as the generalized gravity interaction. In our research, we discovered a novel phase transition type. In the diffusion phase, the scalar quantity is scattered over the whole system, whereas in the localization phase, the flow tends to form localized confluence patterns owing to nonlinearity, resulting in the appearance of special nodes that irreversibly attract huge amounts of flow. We analytically considered the transition for selected network configurations, demonstrating that the transition point depends on the network topology. We also demonstrated that the diffusion phase of this transport model fits well with data from business firms, implying that the whole network structure can be used to model money flow in the real world. More... »

PAGES

5517

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-23675-x

DOI

http://dx.doi.org/10.1038/s41598-018-23675-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101853010

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29615701


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tokyo Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.32197.3e", 
          "name": [
            "Institute of Innovative Research, Tokyo Institute of Technology, 4259-S1-3, Nagatsuta-cho, 226-8503, Yokohama, Midori-ku, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tamura", 
        "givenName": "Koutarou", 
        "id": "sg:person.01054765527.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054765527.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sony Computer Science Laboratories", 
          "id": "https://www.grid.ac/institutes/grid.452725.3", 
          "name": [
            "Sony Computer Science Laboratories, 3-14-13, Higashigotanda, 141-0022, Tokyo, Shinagawa-ku, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takayasu", 
        "givenName": "Hideki", 
        "id": "sg:person.011452542725.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011452542725.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.32197.3e", 
          "name": [
            "Institute of Innovative Research, Tokyo Institute of Technology, 4259-S1-3, Nagatsuta-cho, 226-8503, Yokohama, Midori-ku, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takayasu", 
        "givenName": "Misako", 
        "id": "sg:person.013527045464.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527045464.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreve.82.011111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010334942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.82.011111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010334942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/14/4/043034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012175184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.91.042815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014160996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.91.042815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014160996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1125237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016851442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0906910106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021424991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022499367", 
          "https://doi.org/10.1038/nature10856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.098701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024918334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.098701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024918334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.118701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029344801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.118701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029344801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.016107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030640599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.016107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030640599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.026121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033031367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.026121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033031367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7552(98)00110-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035913093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0047278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039137295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2009/07/l07003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039264745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2009/07/l07003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039264745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/324133.324140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041136418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2009.0495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047026107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/209979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058529492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218127407018452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062955123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s2010194512007805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063028151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptps.179.157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063144249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/81/48005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064231939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2087063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069749141"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "We analyzed nonlinear transport as defined for directed complex networks, where the flux from one node to a neighboring node is given preferentially according to the scalar quantities at the neighbor nodes. This is known as the generalized gravity interaction. In our research, we discovered a novel phase transition type. In the diffusion phase, the scalar quantity is scattered over the whole system, whereas in the localization phase, the flow tends to form localized confluence patterns owing to nonlinearity, resulting in the appearance of special nodes that irreversibly attract huge amounts of flow. We analytically considered the transition for selected network configurations, demonstrating that the transition point depends on the network topology. We also demonstrated that the diffusion phase of this transport model fits well with data from business firms, implying that the whole network structure can be used to model money flow in the real world.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-23675-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Diffusion-localization transition caused by nonlinear transport on complex networks", 
    "pagination": "5517", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "09ae446398182850a561d6e8c93145ae00b831e087a692033e2a1b700ec91f35"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29615701"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-23675-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101853010"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-23675-x", 
      "https://app.dimensions.ai/details/publication/pub.1101853010"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130793_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-23675-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-23675-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-23675-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-23675-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-23675-x'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      50 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-23675-x schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Ne83240c73f5247d1b0c2c3fddc7a2715
4 schema:citation sg:pub.10.1038/nature10856
5 https://doi.org/10.1016/s0169-7552(98)00110-x
6 https://doi.org/10.1073/pnas.0906910106
7 https://doi.org/10.1086/209979
8 https://doi.org/10.1088/1367-2630/14/4/043034
9 https://doi.org/10.1088/1742-5468/2009/07/l07003
10 https://doi.org/10.1098/rsif.2009.0495
11 https://doi.org/10.1103/physreve.74.026121
12 https://doi.org/10.1103/physreve.80.016107
13 https://doi.org/10.1103/physreve.82.011111
14 https://doi.org/10.1103/physreve.91.042815
15 https://doi.org/10.1103/physrevlett.92.118701
16 https://doi.org/10.1103/physrevlett.99.098701
17 https://doi.org/10.1126/science.1125237
18 https://doi.org/10.1142/s0218127407018452
19 https://doi.org/10.1142/s2010194512007805
20 https://doi.org/10.1143/ptps.179.157
21 https://doi.org/10.1145/324133.324140
22 https://doi.org/10.1209/0295-5075/81/48005
23 https://doi.org/10.1371/journal.pone.0047278
24 https://doi.org/10.2307/2087063
25 schema:datePublished 2018-12
26 schema:datePublishedReg 2018-12-01
27 schema:description We analyzed nonlinear transport as defined for directed complex networks, where the flux from one node to a neighboring node is given preferentially according to the scalar quantities at the neighbor nodes. This is known as the generalized gravity interaction. In our research, we discovered a novel phase transition type. In the diffusion phase, the scalar quantity is scattered over the whole system, whereas in the localization phase, the flow tends to form localized confluence patterns owing to nonlinearity, resulting in the appearance of special nodes that irreversibly attract huge amounts of flow. We analytically considered the transition for selected network configurations, demonstrating that the transition point depends on the network topology. We also demonstrated that the diffusion phase of this transport model fits well with data from business firms, implying that the whole network structure can be used to model money flow in the real world.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N0c6f15fdd4724559980c29c1503dcc12
32 Ne34add4e921a4909bfff0d2c68c4b9b2
33 sg:journal.1045337
34 schema:name Diffusion-localization transition caused by nonlinear transport on complex networks
35 schema:pagination 5517
36 schema:productId N09922f563c164a3593e2b77c517999d6
37 N0fe5241b7edf48ef86d257a01ed8ae6f
38 N9c605a45439945a1a7e5974ed8c44a94
39 Nbf88b34d950843f0afe4c832530dad7e
40 Ned5c2379ef274131baf24bd05cfb5016
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101853010
42 https://doi.org/10.1038/s41598-018-23675-x
43 schema:sdDatePublished 2019-04-11T13:49
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N02e3d9fff1e3405eb5fd22722d911a98
46 schema:url https://www.nature.com/articles/s41598-018-23675-x
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N02e3d9fff1e3405eb5fd22722d911a98 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N09922f563c164a3593e2b77c517999d6 schema:name dimensions_id
53 schema:value pub.1101853010
54 rdf:type schema:PropertyValue
55 N0c6f15fdd4724559980c29c1503dcc12 schema:volumeNumber 8
56 rdf:type schema:PublicationVolume
57 N0fe5241b7edf48ef86d257a01ed8ae6f schema:name nlm_unique_id
58 schema:value 101563288
59 rdf:type schema:PropertyValue
60 N395452bfba63498faca7cd2802670926 rdf:first sg:person.011452542725.42
61 rdf:rest N5a11f741323b482db1e46713796f18b6
62 N5a11f741323b482db1e46713796f18b6 rdf:first sg:person.013527045464.18
63 rdf:rest rdf:nil
64 N9c605a45439945a1a7e5974ed8c44a94 schema:name doi
65 schema:value 10.1038/s41598-018-23675-x
66 rdf:type schema:PropertyValue
67 Nbf88b34d950843f0afe4c832530dad7e schema:name pubmed_id
68 schema:value 29615701
69 rdf:type schema:PropertyValue
70 Ne34add4e921a4909bfff0d2c68c4b9b2 schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 Ne83240c73f5247d1b0c2c3fddc7a2715 rdf:first sg:person.01054765527.04
73 rdf:rest N395452bfba63498faca7cd2802670926
74 Ned5c2379ef274131baf24bd05cfb5016 schema:name readcube_id
75 schema:value 09ae446398182850a561d6e8c93145ae00b831e087a692033e2a1b700ec91f35
76 rdf:type schema:PropertyValue
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information Systems
82 rdf:type schema:DefinedTerm
83 sg:journal.1045337 schema:issn 2045-2322
84 schema:name Scientific Reports
85 rdf:type schema:Periodical
86 sg:person.01054765527.04 schema:affiliation https://www.grid.ac/institutes/grid.32197.3e
87 schema:familyName Tamura
88 schema:givenName Koutarou
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054765527.04
90 rdf:type schema:Person
91 sg:person.011452542725.42 schema:affiliation https://www.grid.ac/institutes/grid.452725.3
92 schema:familyName Takayasu
93 schema:givenName Hideki
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011452542725.42
95 rdf:type schema:Person
96 sg:person.013527045464.18 schema:affiliation https://www.grid.ac/institutes/grid.32197.3e
97 schema:familyName Takayasu
98 schema:givenName Misako
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527045464.18
100 rdf:type schema:Person
101 sg:pub.10.1038/nature10856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022499367
102 https://doi.org/10.1038/nature10856
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/s0169-7552(98)00110-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035913093
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1073/pnas.0906910106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021424991
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1086/209979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058529492
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1088/1367-2630/14/4/043034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012175184
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1088/1742-5468/2009/07/l07003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039264745
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1098/rsif.2009.0495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047026107
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physreve.74.026121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033031367
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physreve.80.016107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030640599
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physreve.82.011111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010334942
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physreve.91.042815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014160996
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevlett.92.118701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029344801
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevlett.99.098701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024918334
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1126/science.1125237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016851442
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1142/s0218127407018452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062955123
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1142/s2010194512007805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063028151
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1143/ptps.179.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063144249
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1145/324133.324140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041136418
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1209/0295-5075/81/48005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064231939
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1371/journal.pone.0047278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039137295
141 rdf:type schema:CreativeWork
142 https://doi.org/10.2307/2087063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069749141
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.32197.3e schema:alternateName Tokyo Institute of Technology
145 schema:name Institute of Innovative Research, Tokyo Institute of Technology, 4259-S1-3, Nagatsuta-cho, 226-8503, Yokohama, Midori-ku, Japan
146 rdf:type schema:Organization
147 https://www.grid.ac/institutes/grid.452725.3 schema:alternateName Sony Computer Science Laboratories
148 schema:name Sony Computer Science Laboratories, 3-14-13, Higashigotanda, 141-0022, Tokyo, Shinagawa-ku, Japan
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...