Low Threshold Room Temperature Amplified Spontaneous Emission in 0D, 1D and 2D Quantum Confined Systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Parva Chhantyal, Suraj Naskar, Tobias Birr, Tim Fischer, Franziska Lübkemann, Boris N. Chichkov, Dirk Dorfs, Nadja C. Bigall, Carsten Reinhardt

ABSTRACT

We address optical amplification properties of quantum nanoparticles of the cadmium selenide/cadmium sulfide (CdSe/CdS) material system with different dimensionality of spatial confinement. CdSe/CdS core/shell quantum dots (QDs), core/shell quantum rods (QRs) and 5 monolayer thick core/crown nanoplatelets (NPLs) at ambient temperature are considered, exhibiting 0D, 1D and 2D spatial confinement dimensionality of the electronic system, respectively. Continuous films of all these nanoparticles are synthesised, and amplified spontaneous emission (ASE) spectra are measured under femtosecond pumping at wavelengths of 400 nm and 800 nm, respectively. The lowest threshold is found for NPLs and the highest for QDs, demonstrating the influence of the rod-like and plate-like CdS structures. To emphasize this effect, ASE is demonstrated also in CdSe/CdS QRs and NPLs under nanosecond pumping at 355 nm in the same material films. The amplification has been achieved without use of any feedback structure, emphazising the efficiency of the antenna effect. The pumping threshold fluences for NPLs and QRs are observed to be similar, but no ASE is observed in QDs up to the damage threshold of the nanoparticle layers. The length variation investigation with nanosecond pumping resulted in the gain coefficients of 29 cm-1 and 37 cm-1 for QRs and NPLs, respectively. More... »

PAGES

3962

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-22287-9

DOI

http://dx.doi.org/10.1038/s41598-018-22287-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101225863

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29500408


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laser Zentrum Hannover", 
          "id": "https://www.grid.ac/institutes/grid.425376.1", 
          "name": [
            "Laser Zentrum Hannover e.V., Nanotechnology Department, D-30419, Hannover, Germany", 
            "Laboratory for Nano and Quantum Engineering, D-30167, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chhantyal", 
        "givenName": "Parva", 
        "id": "sg:person.016420120157.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016420120157.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Leibniz Universit\u00e4t Hannover, Institute of Physical Chemistry and Electrochemistry, D-30167, Hannover, Germany", 
            "Laboratory for Nano and Quantum Engineering, D-30167, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naskar", 
        "givenName": "Suraj", 
        "id": "sg:person.01353357647.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353357647.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laser Zentrum Hannover", 
          "id": "https://www.grid.ac/institutes/grid.425376.1", 
          "name": [
            "Laser Zentrum Hannover e.V., Nanotechnology Department, D-30419, Hannover, Germany", 
            "Laboratory for Nano and Quantum Engineering, D-30167, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Birr", 
        "givenName": "Tobias", 
        "id": "sg:person.0663565172.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663565172.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laser Zentrum Hannover", 
          "id": "https://www.grid.ac/institutes/grid.425376.1", 
          "name": [
            "Laser Zentrum Hannover e.V., Nanotechnology Department, D-30419, Hannover, Germany", 
            "Laboratory for Nano and Quantum Engineering, D-30167, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fischer", 
        "givenName": "Tim", 
        "id": "sg:person.014227576557.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014227576557.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Leibniz Universit\u00e4t Hannover, Institute of Physical Chemistry and Electrochemistry, D-30167, Hannover, Germany", 
            "Laboratory for Nano and Quantum Engineering, D-30167, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00fcbkemann", 
        "givenName": "Franziska", 
        "id": "sg:person.012730547473.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012730547473.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laser Zentrum Hannover", 
          "id": "https://www.grid.ac/institutes/grid.425376.1", 
          "name": [
            "Laser Zentrum Hannover e.V., Nanotechnology Department, D-30419, Hannover, Germany", 
            "Laboratory for Nano and Quantum Engineering, D-30167, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chichkov", 
        "givenName": "Boris N.", 
        "id": "sg:person.01325267166.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325267166.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Leibniz Universit\u00e4t Hannover, Institute of Physical Chemistry and Electrochemistry, D-30167, Hannover, Germany", 
            "Laboratory for Nano and Quantum Engineering, D-30167, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dorfs", 
        "givenName": "Dirk", 
        "id": "sg:person.0672106233.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672106233.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Leibniz Universit\u00e4t Hannover, Institute of Physical Chemistry and Electrochemistry, D-30167, Hannover, Germany", 
            "Laboratory for Nano and Quantum Engineering, D-30167, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bigall", 
        "givenName": "Nadja C.", 
        "id": "sg:person.01254240722.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254240722.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laser Zentrum Hannover", 
          "id": "https://www.grid.ac/institutes/grid.425376.1", 
          "name": [
            "Laser Zentrum Hannover e.V., Nanotechnology Department, D-30419, Hannover, Germany", 
            "Laboratory for Nano and Quantum Engineering, D-30167, Hannover, Germany", 
            "University of Applied Sciences, D-28199, Bremen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reinhardt", 
        "givenName": "Carsten", 
        "id": "sg:person.0761644543.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761644543.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/ja0363563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003427264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0363563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003427264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0958-1669(02)00282-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006230504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/26/1/014013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007257848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl500775p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007858752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201101684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008904455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009262924", 
          "https://doi.org/10.1038/nnano.2012.61"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-44823-6_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010812341", 
          "https://doi.org/10.1007/978-3-662-44823-6_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2313(90)90007-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013127567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2313(90)90007-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013127567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(92)90504-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015945512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(92)90504-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015945512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020600946", 
          "https://doi.org/10.1038/nphys363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020600946", 
          "https://doi.org/10.1038/nphys363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemmater.5b01110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028183866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/23/1/015201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029463610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.22.007308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031474841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.22.007308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031474841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/wjcmp.2012.22017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036584959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201604685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038231235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ma3063468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040374583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5490.314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040906628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0717661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046401795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0717661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046401795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2313(96)00052-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050521036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemmater.5b04872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053897773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.5b02509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055137095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsphotonics.6b00327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055138985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp070075q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056070335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp070075q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056070335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl049216f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl049216f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl403746p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.114288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057670693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.92959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058133098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.4814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060580313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.4814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060580313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.227401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.227401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature21424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084128554", 
          "https://doi.org/10.1038/nature21424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat5040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092789924", 
          "https://doi.org/10.1038/nmat5040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat5040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092789924", 
          "https://doi.org/10.1038/nmat5040"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "We address optical amplification properties of quantum nanoparticles of the cadmium selenide/cadmium sulfide (CdSe/CdS) material system with different dimensionality of spatial confinement. CdSe/CdS core/shell quantum dots (QDs), core/shell quantum rods (QRs) and 5 monolayer thick core/crown nanoplatelets (NPLs) at ambient temperature are considered, exhibiting 0D, 1D and 2D spatial confinement dimensionality of the electronic system, respectively. Continuous films of all these nanoparticles are synthesised, and amplified spontaneous emission (ASE) spectra are measured under femtosecond pumping at wavelengths of 400 nm and 800 nm, respectively. The lowest threshold is found for NPLs and the highest for QDs, demonstrating the influence of the rod-like and plate-like CdS structures. To emphasize this effect, ASE is demonstrated also in CdSe/CdS QRs and NPLs under nanosecond pumping at 355 nm in the same material films. The amplification has been achieved without use of any feedback structure, emphazising the efficiency of the antenna effect. The pumping threshold fluences for NPLs and QRs are observed to be similar, but no ASE is observed in QDs up to the damage threshold of the nanoparticle layers. The length variation investigation with nanosecond pumping resulted in the gain coefficients of 29 cm-1 and 37 cm-1 for QRs and NPLs, respectively.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-22287-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6623442", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Low Threshold Room Temperature Amplified Spontaneous Emission in 0D, 1D and 2D Quantum Confined Systems", 
    "pagination": "3962", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9869b9b90df7f4b75f08779e9c173fb5c86c3d86732ec57552b3646d04cf5c5c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29500408"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-22287-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101225863"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-22287-9", 
      "https://app.dimensions.ai/details/publication/pub.1101225863"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113647_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-22287-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-22287-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-22287-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-22287-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-22287-9'


 

This table displays all metadata directly associated to this object as RDF triples.

230 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-22287-9 schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author Ne1b90c2755fe47bdbbb1cc84f84db7f7
4 schema:citation sg:pub.10.1007/978-3-662-44823-6_2
5 sg:pub.10.1038/nature21424
6 sg:pub.10.1038/nmat5040
7 sg:pub.10.1038/nnano.2012.61
8 sg:pub.10.1038/nphys363
9 https://doi.org/10.1002/adfm.201101684
10 https://doi.org/10.1002/adfm.201604685
11 https://doi.org/10.1016/0022-2313(90)90007-x
12 https://doi.org/10.1016/0022-2313(96)00052-x
13 https://doi.org/10.1016/0038-1098(92)90504-3
14 https://doi.org/10.1016/s0958-1669(02)00282-3
15 https://doi.org/10.1021/acs.chemmater.5b01110
16 https://doi.org/10.1021/acs.chemmater.5b04872
17 https://doi.org/10.1021/acsnano.5b02509
18 https://doi.org/10.1021/acsphotonics.6b00327
19 https://doi.org/10.1021/ja0363563
20 https://doi.org/10.1021/jp070075q
21 https://doi.org/10.1021/nl049216f
22 https://doi.org/10.1021/nl0717661
23 https://doi.org/10.1021/nl403746p
24 https://doi.org/10.1021/nl500775p
25 https://doi.org/10.1063/1.114288
26 https://doi.org/10.1063/1.92959
27 https://doi.org/10.1088/0268-1242/26/1/014013
28 https://doi.org/10.1088/0957-4484/23/1/015201
29 https://doi.org/10.1103/physrevb.53.4814
30 https://doi.org/10.1103/physrevlett.91.227401
31 https://doi.org/10.1126/science.290.5490.314
32 https://doi.org/10.1364/oe.22.007308
33 https://doi.org/10.3390/ma3063468
34 https://doi.org/10.4236/wjcmp.2012.22017
35 schema:datePublished 2018-12
36 schema:datePublishedReg 2018-12-01
37 schema:description We address optical amplification properties of quantum nanoparticles of the cadmium selenide/cadmium sulfide (CdSe/CdS) material system with different dimensionality of spatial confinement. CdSe/CdS core/shell quantum dots (QDs), core/shell quantum rods (QRs) and 5 monolayer thick core/crown nanoplatelets (NPLs) at ambient temperature are considered, exhibiting 0D, 1D and 2D spatial confinement dimensionality of the electronic system, respectively. Continuous films of all these nanoparticles are synthesised, and amplified spontaneous emission (ASE) spectra are measured under femtosecond pumping at wavelengths of 400 nm and 800 nm, respectively. The lowest threshold is found for NPLs and the highest for QDs, demonstrating the influence of the rod-like and plate-like CdS structures. To emphasize this effect, ASE is demonstrated also in CdSe/CdS QRs and NPLs under nanosecond pumping at 355 nm in the same material films. The amplification has been achieved without use of any feedback structure, emphazising the efficiency of the antenna effect. The pumping threshold fluences for NPLs and QRs are observed to be similar, but no ASE is observed in QDs up to the damage threshold of the nanoparticle layers. The length variation investigation with nanosecond pumping resulted in the gain coefficients of 29 cm<sup>-1</sup> and 37 cm<sup>-1</sup> for QRs and NPLs, respectively.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N7d07029125b948babc1092639f37d13f
42 N93364ee6a59749948331f4f553147fa8
43 sg:journal.1045337
44 schema:name Low Threshold Room Temperature Amplified Spontaneous Emission in 0D, 1D and 2D Quantum Confined Systems
45 schema:pagination 3962
46 schema:productId N2f4376822f02435d9f679c75f4599543
47 N39590f37ea2044b0a9e90b8db871d42c
48 N64b52a52f1de4f89a917f37e8061dc0f
49 N6daf95d7a4404b649d98c61bd74d747c
50 Nbc35e0995e8b48f593f4fac19634b0bf
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101225863
52 https://doi.org/10.1038/s41598-018-22287-9
53 schema:sdDatePublished 2019-04-11T10:30
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nbc82b7ea152c48fa8354a1c8851ca207
56 schema:url https://www.nature.com/articles/s41598-018-22287-9
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N1093de225a384118836909924521a493 rdf:first sg:person.0672106233.64
61 rdf:rest N41bc6a286f264f69a399dfc42488da52
62 N2f4376822f02435d9f679c75f4599543 schema:name nlm_unique_id
63 schema:value 101563288
64 rdf:type schema:PropertyValue
65 N39590f37ea2044b0a9e90b8db871d42c schema:name pubmed_id
66 schema:value 29500408
67 rdf:type schema:PropertyValue
68 N41bc6a286f264f69a399dfc42488da52 rdf:first sg:person.01254240722.12
69 rdf:rest N57c54df441b3413889d7b98e3591f9c3
70 N5146acbd7a254a41b13b27cf51671996 rdf:first sg:person.012730547473.61
71 rdf:rest N8bf5d6dd72c84defb2af3a42a6c5815e
72 N57c54df441b3413889d7b98e3591f9c3 rdf:first sg:person.0761644543.39
73 rdf:rest rdf:nil
74 N5ed5a31c695e40e2ab6bc66971b03ca5 rdf:first sg:person.01353357647.11
75 rdf:rest N8a0699dd0b064a98a7832b64db6239d0
76 N64b52a52f1de4f89a917f37e8061dc0f schema:name readcube_id
77 schema:value 9869b9b90df7f4b75f08779e9c173fb5c86c3d86732ec57552b3646d04cf5c5c
78 rdf:type schema:PropertyValue
79 N6daf95d7a4404b649d98c61bd74d747c schema:name doi
80 schema:value 10.1038/s41598-018-22287-9
81 rdf:type schema:PropertyValue
82 N7d07029125b948babc1092639f37d13f schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 N8a0699dd0b064a98a7832b64db6239d0 rdf:first sg:person.0663565172.91
85 rdf:rest Nee53f21baa3d4543acc0a2ba17187586
86 N8bf5d6dd72c84defb2af3a42a6c5815e rdf:first sg:person.01325267166.41
87 rdf:rest N1093de225a384118836909924521a493
88 N93364ee6a59749948331f4f553147fa8 schema:volumeNumber 8
89 rdf:type schema:PublicationVolume
90 Nbc35e0995e8b48f593f4fac19634b0bf schema:name dimensions_id
91 schema:value pub.1101225863
92 rdf:type schema:PropertyValue
93 Nbc82b7ea152c48fa8354a1c8851ca207 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Ne1b90c2755fe47bdbbb1cc84f84db7f7 rdf:first sg:person.016420120157.15
96 rdf:rest N5ed5a31c695e40e2ab6bc66971b03ca5
97 Nee53f21baa3d4543acc0a2ba17187586 rdf:first sg:person.014227576557.79
98 rdf:rest N5146acbd7a254a41b13b27cf51671996
99 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
100 schema:name Technology
101 rdf:type schema:DefinedTerm
102 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
103 schema:name Nanotechnology
104 rdf:type schema:DefinedTerm
105 sg:grant.6623442 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-22287-9
106 rdf:type schema:MonetaryGrant
107 sg:journal.1045337 schema:issn 2045-2322
108 schema:name Scientific Reports
109 rdf:type schema:Periodical
110 sg:person.01254240722.12 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
111 schema:familyName Bigall
112 schema:givenName Nadja C.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254240722.12
114 rdf:type schema:Person
115 sg:person.012730547473.61 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
116 schema:familyName Lübkemann
117 schema:givenName Franziska
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012730547473.61
119 rdf:type schema:Person
120 sg:person.01325267166.41 schema:affiliation https://www.grid.ac/institutes/grid.425376.1
121 schema:familyName Chichkov
122 schema:givenName Boris N.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325267166.41
124 rdf:type schema:Person
125 sg:person.01353357647.11 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
126 schema:familyName Naskar
127 schema:givenName Suraj
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353357647.11
129 rdf:type schema:Person
130 sg:person.014227576557.79 schema:affiliation https://www.grid.ac/institutes/grid.425376.1
131 schema:familyName Fischer
132 schema:givenName Tim
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014227576557.79
134 rdf:type schema:Person
135 sg:person.016420120157.15 schema:affiliation https://www.grid.ac/institutes/grid.425376.1
136 schema:familyName Chhantyal
137 schema:givenName Parva
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016420120157.15
139 rdf:type schema:Person
140 sg:person.0663565172.91 schema:affiliation https://www.grid.ac/institutes/grid.425376.1
141 schema:familyName Birr
142 schema:givenName Tobias
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663565172.91
144 rdf:type schema:Person
145 sg:person.0672106233.64 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
146 schema:familyName Dorfs
147 schema:givenName Dirk
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672106233.64
149 rdf:type schema:Person
150 sg:person.0761644543.39 schema:affiliation https://www.grid.ac/institutes/grid.425376.1
151 schema:familyName Reinhardt
152 schema:givenName Carsten
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761644543.39
154 rdf:type schema:Person
155 sg:pub.10.1007/978-3-662-44823-6_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010812341
156 https://doi.org/10.1007/978-3-662-44823-6_2
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nature21424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128554
159 https://doi.org/10.1038/nature21424
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nmat5040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092789924
162 https://doi.org/10.1038/nmat5040
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nnano.2012.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009262924
165 https://doi.org/10.1038/nnano.2012.61
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nphys363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020600946
168 https://doi.org/10.1038/nphys363
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/adfm.201101684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008904455
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/adfm.201604685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038231235
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/0022-2313(90)90007-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013127567
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/0022-2313(96)00052-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050521036
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/0038-1098(92)90504-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015945512
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/s0958-1669(02)00282-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006230504
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/acs.chemmater.5b01110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028183866
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/acs.chemmater.5b04872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053897773
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/acsnano.5b02509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055137095
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1021/acsphotonics.6b00327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055138985
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1021/ja0363563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003427264
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/jp070075q schema:sameAs https://app.dimensions.ai/details/publication/pub.1056070335
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1021/nl049216f schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216022
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1021/nl0717661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046401795
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1021/nl403746p schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220448
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1021/nl500775p schema:sameAs https://app.dimensions.ai/details/publication/pub.1007858752
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1063/1.114288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057670693
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1063/1.92959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058133098
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1088/0268-1242/26/1/014013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007257848
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1088/0957-4484/23/1/015201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029463610
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevb.53.4814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060580313
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevlett.91.227401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827597
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.290.5490.314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040906628
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1364/oe.22.007308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031474841
217 rdf:type schema:CreativeWork
218 https://doi.org/10.3390/ma3063468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040374583
219 rdf:type schema:CreativeWork
220 https://doi.org/10.4236/wjcmp.2012.22017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036584959
221 rdf:type schema:CreativeWork
222 https://www.grid.ac/institutes/grid.425376.1 schema:alternateName Laser Zentrum Hannover
223 schema:name Laboratory for Nano and Quantum Engineering, D-30167, Hannover, Germany
224 Laser Zentrum Hannover e.V., Nanotechnology Department, D-30419, Hannover, Germany
225 University of Applied Sciences, D-28199, Bremen, Germany
226 rdf:type schema:Organization
227 https://www.grid.ac/institutes/grid.9122.8 schema:alternateName University of Hannover
228 schema:name Laboratory for Nano and Quantum Engineering, D-30167, Hannover, Germany
229 Leibniz Universität Hannover, Institute of Physical Chemistry and Electrochemistry, D-30167, Hannover, Germany
230 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...