New thin-film surface electrode array enables brain mapping with high spatial acuity in rodents View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

W. S. Konerding, U. P. Froriep, A. Kral, P. Baumhoff

ABSTRACT

In neuroscience, single-shank penetrating multi-electrode arrays are standard for sequentially sampling several cortical sites with high spatial and temporal resolution, with the disadvantage of neuronal damage. Non-penetrating surface grids used in electrocorticography (ECoG) permit simultaneous recording of multiple cortical sites, with limited spatial resolution, due to distance to neuronal tissue, large contact size and high impedances. Here we compared new thin-film parylene C ECoG grids, covering the guinea pig primary auditory cortex, with simultaneous recordings from penetrating electrode array (PEAs), inserted through openings in the grid material. ECoG grid local field potentials (LFP) showed higher response thresholds and amplitudes compared to PEAs. They enabled, however, fast and reliable tonotopic mapping of the auditory cortex (place-frequency slope: 0.7 mm/octave), with tuning widths similar to PEAs. The ECoG signal correlated best with supragranular layers, exponentially decreasing with cortical depth. The grids also enabled recording of multi-unit activity (MUA), yielding several advantages over LFP recordings, including sharper frequency tunings. ECoG first spike latency showed highest similarity to superficial PEA contacts and MUA traces maximally correlated with PEA recordings from the granular layer. These results confirm high quality of the ECoG grid recordings and the possibility to collect LFP and MUA simultaneously. More... »

PAGES

3825

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-22051-z

DOI

http://dx.doi.org/10.1038/s41598-018-22051-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101191542

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29491453


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hannover Medical School", 
          "id": "https://www.grid.ac/institutes/grid.10423.34", 
          "name": [
            "Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Stadtfelddamm 34, Hannover Medical School, 30625, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konerding", 
        "givenName": "W. S.", 
        "id": "sg:person.0747255477.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747255477.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Toxicology and Experimental Medicine", 
          "id": "https://www.grid.ac/institutes/grid.418009.4", 
          "name": [
            "Translational Biomedical Engineering, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Froriep", 
        "givenName": "U. P.", 
        "id": "sg:person.01356132027.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356132027.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hannover Medical School", 
          "id": "https://www.grid.ac/institutes/grid.10423.34", 
          "name": [
            "Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Stadtfelddamm 34, Hannover Medical School, 30625, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kral", 
        "givenName": "A.", 
        "id": "sg:person.0745164540.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745164540.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hannover Medical School", 
          "id": "https://www.grid.ac/institutes/grid.10423.34", 
          "name": [
            "Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Stadtfelddamm 34, Hannover Medical School, 30625, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baumhoff", 
        "givenName": "P.", 
        "id": "sg:person.01321162350.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321162350.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jphysparis.2011.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004194958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn3241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004751033", 
          "https://doi.org/10.1038/nrn3241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.2424-08.2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006784495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-0074-6_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008113486", 
          "https://doi.org/10.1007/978-1-4419-0074-6_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-0074-6_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008113486", 
          "https://doi.org/10.1007/978-1-4419-0074-6_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fncir.2016.00101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009473880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-5955(02)00329-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009796425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2011.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009812190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.1000610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011925971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00157.2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015050507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhv351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020828416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2010.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023257499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00236184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023885013", 
          "https://doi.org/10.1007/bf00236184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00236184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023885013", 
          "https://doi.org/10.1007/bf00236184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.3905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025013346", 
          "https://doi.org/10.1038/nn.3905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cne.902820402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025332362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.2218-07.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030412410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/ejn.12828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031734535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002210000362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032802704", 
          "https://doi.org/10.1007/s002210000362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.2573-09.2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035987878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00040.2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037500170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13534-016-0235-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038360959", 
          "https://doi.org/10.1007/s13534-016-0235-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2016.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038944311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expneurol.2005.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039747430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expneurol.2005.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039747430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3200/jexe.74.3.249-266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040079977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040871308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0020046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040934211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511979958.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043336773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1288/00005537-193304000-00013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044145355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976604774201631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044789005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2015.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045364623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2015.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045364623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2015.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045364623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2015.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045364623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0610368104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045466272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00221-007-1092-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046855833", 
          "https://doi.org/10.1007/s00221-007-1092-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00221-007-1092-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046855833", 
          "https://doi.org/10.1007/s00221-007-1092-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2008.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048942603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00116.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049437352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brainres.2009.05.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050725891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1972.sp009984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051087825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2005.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052616152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.1912596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062278186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.22-24-11019.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075204839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2011.6091655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078503891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1995.73.1.227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082476718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1995.73.2.674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082496270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.heares.2017.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083849221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brs.2017.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084062971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physrev.00027.2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084228791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.heares.2017.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085204721"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "In neuroscience, single-shank penetrating multi-electrode arrays are standard for sequentially sampling several cortical sites with high spatial and temporal resolution, with the disadvantage of neuronal damage. Non-penetrating surface grids used in electrocorticography (ECoG) permit simultaneous recording of multiple cortical sites, with limited spatial resolution, due to distance to neuronal tissue, large contact size and high impedances. Here we compared new thin-film parylene C ECoG grids, covering the guinea pig primary auditory cortex, with simultaneous recordings from penetrating electrode array (PEAs), inserted through openings in the grid material. ECoG grid local field potentials (LFP) showed higher response thresholds and amplitudes compared to PEAs. They enabled, however, fast and reliable tonotopic mapping of the auditory cortex (place-frequency slope: 0.7\u2009mm/octave), with tuning widths similar to PEAs. The ECoG signal correlated best with supragranular layers, exponentially decreasing with cortical depth. The grids also enabled recording of multi-unit activity (MUA), yielding several advantages over LFP recordings, including sharper frequency tunings. ECoG first spike latency showed highest similarity to superficial PEA contacts and MUA traces maximally correlated with PEA recordings from the granular layer. These results confirm high quality of the ECoG grid recordings and the possibility to collect LFP and MUA simultaneously.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-22051-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "New thin-film surface electrode array enables brain mapping with high spatial acuity in rodents", 
    "pagination": "3825", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "45ad03cf9a670ca30f6215912fe13d80f618ff14a0e82457b56941fcea12de4e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29491453"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-22051-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101191542"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-22051-z", 
      "https://app.dimensions.ai/details/publication/pub.1101191542"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54325_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-22051-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-22051-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-22051-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-22051-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-22051-z'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      74 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-22051-z schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Naeb9bec69cd64a1d9976e6b6a9ea67d7
4 schema:citation sg:pub.10.1007/978-1-4419-0074-6_13
5 sg:pub.10.1007/bf00236184
6 sg:pub.10.1007/s00221-007-1092-z
7 sg:pub.10.1007/s002210000362
8 sg:pub.10.1007/s13534-016-0235-1
9 sg:pub.10.1038/nn.3905
10 sg:pub.10.1038/nrn3241
11 https://doi.org/10.1002/cne.902820402
12 https://doi.org/10.1016/j.brainres.2009.05.052
13 https://doi.org/10.1016/j.brs.2017.02.009
14 https://doi.org/10.1016/j.clinph.2015.06.002
15 https://doi.org/10.1016/j.expneurol.2005.04.020
16 https://doi.org/10.1016/j.heares.2017.02.010
17 https://doi.org/10.1016/j.heares.2017.04.013
18 https://doi.org/10.1016/j.jneumeth.2005.10.016
19 https://doi.org/10.1016/j.jneumeth.2008.05.010
20 https://doi.org/10.1016/j.jneumeth.2016.04.004
21 https://doi.org/10.1016/j.jphysparis.2011.09.006
22 https://doi.org/10.1016/j.neuroimage.2010.08.003
23 https://doi.org/10.1016/j.neuron.2011.09.029
24 https://doi.org/10.1016/s0378-5955(02)00329-5
25 https://doi.org/10.1017/cbo9780511979958.004
26 https://doi.org/10.1073/pnas.0610368104
27 https://doi.org/10.1073/pnas.94.1.1
28 https://doi.org/10.1093/cercor/bhv351
29 https://doi.org/10.1109/iembs.2011.6091655
30 https://doi.org/10.1111/ejn.12828
31 https://doi.org/10.1113/jphysiol.1972.sp009984
32 https://doi.org/10.1121/1.1912596
33 https://doi.org/10.1152/jn.00040.2012
34 https://doi.org/10.1152/jn.00116.2003
35 https://doi.org/10.1152/jn.00157.2010
36 https://doi.org/10.1152/jn.1995.73.1.227
37 https://doi.org/10.1152/jn.1995.73.2.674
38 https://doi.org/10.1152/physrev.00027.2016
39 https://doi.org/10.1162/089976604774201631
40 https://doi.org/10.1288/00005537-193304000-00013
41 https://doi.org/10.1371/journal.pbio.1000610
42 https://doi.org/10.1371/journal.pone.0020046
43 https://doi.org/10.1523/jneurosci.22-24-11019.2002
44 https://doi.org/10.1523/jneurosci.2218-07.2007
45 https://doi.org/10.1523/jneurosci.2424-08.2009
46 https://doi.org/10.1523/jneurosci.2573-09.2009
47 https://doi.org/10.3200/jexe.74.3.249-266
48 https://doi.org/10.3389/fncir.2016.00101
49 schema:datePublished 2018-12
50 schema:datePublishedReg 2018-12-01
51 schema:description In neuroscience, single-shank penetrating multi-electrode arrays are standard for sequentially sampling several cortical sites with high spatial and temporal resolution, with the disadvantage of neuronal damage. Non-penetrating surface grids used in electrocorticography (ECoG) permit simultaneous recording of multiple cortical sites, with limited spatial resolution, due to distance to neuronal tissue, large contact size and high impedances. Here we compared new thin-film parylene C ECoG grids, covering the guinea pig primary auditory cortex, with simultaneous recordings from penetrating electrode array (PEAs), inserted through openings in the grid material. ECoG grid local field potentials (LFP) showed higher response thresholds and amplitudes compared to PEAs. They enabled, however, fast and reliable tonotopic mapping of the auditory cortex (place-frequency slope: 0.7 mm/octave), with tuning widths similar to PEAs. The ECoG signal correlated best with supragranular layers, exponentially decreasing with cortical depth. The grids also enabled recording of multi-unit activity (MUA), yielding several advantages over LFP recordings, including sharper frequency tunings. ECoG first spike latency showed highest similarity to superficial PEA contacts and MUA traces maximally correlated with PEA recordings from the granular layer. These results confirm high quality of the ECoG grid recordings and the possibility to collect LFP and MUA simultaneously.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N1e7f6ec679244c7dad7b7a67c349c275
56 N46f0af6f49fc44299609cb06e9c98c51
57 sg:journal.1045337
58 schema:name New thin-film surface electrode array enables brain mapping with high spatial acuity in rodents
59 schema:pagination 3825
60 schema:productId N1d8d9e32069341188cf138b67a51aa16
61 N897507f342ec4922a9118f8c77edd3c9
62 N8dbd6ee4aa644450be07ccda0432f79d
63 Na57a4f5921c1482fb2cbcb776a79dacf
64 Nd9cd03082a4b4e009bf66646465790d6
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101191542
66 https://doi.org/10.1038/s41598-018-22051-z
67 schema:sdDatePublished 2019-04-11T10:19
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N5a6cc4845da044c7a3138e043e2ec3aa
70 schema:url https://www.nature.com/articles/s41598-018-22051-z
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N1d8d9e32069341188cf138b67a51aa16 schema:name dimensions_id
75 schema:value pub.1101191542
76 rdf:type schema:PropertyValue
77 N1e7f6ec679244c7dad7b7a67c349c275 schema:volumeNumber 8
78 rdf:type schema:PublicationVolume
79 N361c82a12c224f26929bbcbd63811d20 rdf:first sg:person.0745164540.68
80 rdf:rest N4494ffe6d9ff4401a0696f0d7460ca18
81 N4494ffe6d9ff4401a0696f0d7460ca18 rdf:first sg:person.01321162350.68
82 rdf:rest rdf:nil
83 N46f0af6f49fc44299609cb06e9c98c51 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N5a6cc4845da044c7a3138e043e2ec3aa schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N5c9c33793d354098a9f40787a08d50a7 rdf:first sg:person.01356132027.55
88 rdf:rest N361c82a12c224f26929bbcbd63811d20
89 N897507f342ec4922a9118f8c77edd3c9 schema:name doi
90 schema:value 10.1038/s41598-018-22051-z
91 rdf:type schema:PropertyValue
92 N8dbd6ee4aa644450be07ccda0432f79d schema:name nlm_unique_id
93 schema:value 101563288
94 rdf:type schema:PropertyValue
95 Na57a4f5921c1482fb2cbcb776a79dacf schema:name readcube_id
96 schema:value 45ad03cf9a670ca30f6215912fe13d80f618ff14a0e82457b56941fcea12de4e
97 rdf:type schema:PropertyValue
98 Naeb9bec69cd64a1d9976e6b6a9ea67d7 rdf:first sg:person.0747255477.00
99 rdf:rest N5c9c33793d354098a9f40787a08d50a7
100 Nd9cd03082a4b4e009bf66646465790d6 schema:name pubmed_id
101 schema:value 29491453
102 rdf:type schema:PropertyValue
103 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
104 schema:name Medical and Health Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
107 schema:name Neurosciences
108 rdf:type schema:DefinedTerm
109 sg:journal.1045337 schema:issn 2045-2322
110 schema:name Scientific Reports
111 rdf:type schema:Periodical
112 sg:person.01321162350.68 schema:affiliation https://www.grid.ac/institutes/grid.10423.34
113 schema:familyName Baumhoff
114 schema:givenName P.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321162350.68
116 rdf:type schema:Person
117 sg:person.01356132027.55 schema:affiliation https://www.grid.ac/institutes/grid.418009.4
118 schema:familyName Froriep
119 schema:givenName U. P.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356132027.55
121 rdf:type schema:Person
122 sg:person.0745164540.68 schema:affiliation https://www.grid.ac/institutes/grid.10423.34
123 schema:familyName Kral
124 schema:givenName A.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745164540.68
126 rdf:type schema:Person
127 sg:person.0747255477.00 schema:affiliation https://www.grid.ac/institutes/grid.10423.34
128 schema:familyName Konerding
129 schema:givenName W. S.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747255477.00
131 rdf:type schema:Person
132 sg:pub.10.1007/978-1-4419-0074-6_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008113486
133 https://doi.org/10.1007/978-1-4419-0074-6_13
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf00236184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023885013
136 https://doi.org/10.1007/bf00236184
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00221-007-1092-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1046855833
139 https://doi.org/10.1007/s00221-007-1092-z
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s002210000362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032802704
142 https://doi.org/10.1007/s002210000362
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s13534-016-0235-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038360959
145 https://doi.org/10.1007/s13534-016-0235-1
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nn.3905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025013346
148 https://doi.org/10.1038/nn.3905
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nrn3241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004751033
151 https://doi.org/10.1038/nrn3241
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/cne.902820402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025332362
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.brainres.2009.05.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050725891
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.brs.2017.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084062971
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.clinph.2015.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045364623
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.expneurol.2005.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039747430
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.heares.2017.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083849221
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.heares.2017.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085204721
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.jneumeth.2005.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052616152
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.jneumeth.2008.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048942603
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.jneumeth.2016.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038944311
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.jphysparis.2011.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004194958
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.neuroimage.2010.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023257499
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.neuron.2011.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009812190
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0378-5955(02)00329-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009796425
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1017/cbo9780511979958.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043336773
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1073/pnas.0610368104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045466272
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1073/pnas.94.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040871308
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/cercor/bhv351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020828416
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/iembs.2011.6091655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078503891
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1111/ejn.12828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031734535
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1113/jphysiol.1972.sp009984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051087825
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1121/1.1912596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062278186
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1152/jn.00040.2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037500170
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1152/jn.00116.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049437352
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1152/jn.00157.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015050507
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1152/jn.1995.73.1.227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082476718
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1152/jn.1995.73.2.674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082496270
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1152/physrev.00027.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084228791
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1162/089976604774201631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044789005
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1288/00005537-193304000-00013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044145355
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1371/journal.pbio.1000610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011925971
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1371/journal.pone.0020046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040934211
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1523/jneurosci.22-24-11019.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075204839
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1523/jneurosci.2218-07.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030412410
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1523/jneurosci.2424-08.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006784495
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1523/jneurosci.2573-09.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035987878
224 rdf:type schema:CreativeWork
225 https://doi.org/10.3200/jexe.74.3.249-266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040079977
226 rdf:type schema:CreativeWork
227 https://doi.org/10.3389/fncir.2016.00101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009473880
228 rdf:type schema:CreativeWork
229 https://www.grid.ac/institutes/grid.10423.34 schema:alternateName Hannover Medical School
230 schema:name Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Stadtfelddamm 34, Hannover Medical School, 30625, Hannover, Germany
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.418009.4 schema:alternateName Fraunhofer Institute for Toxicology and Experimental Medicine
233 schema:name Translational Biomedical Engineering, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...