Prediction of coronary disease incidence by biomarkers of inflammation, oxidation, and metabolism View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-02-16

AUTHORS

Isaac Subirana, Montserrat Fitó, Oscar Diaz, Joan Vila, Albert Francés, Eva Delpon, Juan Sanchis, Roberto Elosua, Daniel Muñoz-Aguayo, Irene R. Dégano, Jaume Marrugat

ABSTRACT

The effect of circulating biomarkers in predicting coronary artery disease (CAD) is not fully elucidated. This study aimed to determine the relationship with CAD and the predictive capacity of nine biomarkers of inflammation (TNF-α, IL-10, IL-6, MCP-1, CRP), oxidation (GHS-Px), and metabolism (adiponectin, leptin, and insulin). This was a case-cohort study, within the REGICOR population-cohorts (North-Eastern Spain), of 105 CAD cases and 638 individuals randomly selected from a cohort of 5,404 participants aged 35-74 years (mean follow-up = 6.1 years). Biomarkers' hazard ratio (HR)/standard deviation was estimated with Cox models adjusted for age, sex, and classical risk factors. Discrimination improvement and reclassification were analyzed with the c-index and the Net reclassification index (NRI). GHS-Px (adjusted HRs = 0.77; 95%CI:0.60-0.99), insulin (1.46; 1.08-1.98), leptin (1.40; 1.03-1.90), IL-6 (1.34; 1.03-1.74), and TNF-α (1.80; 1.26-2.57) were significantly associated with CAD incidence. In the model adjusted for all biomarkers, TNF-α (1.87;1.31-2.66) and insulin (1.59;1.16-2.19) were independently associated with CAD. This final model, compared to a model without biomarkers, showed a c-index difference of 1.3% (-0.7, 3.2) and a continuous NRI of 33.7% (2.6, 61.9). TNF-α and insulin are independently associated with CAD incidence and they improve reclassification when added to a model including classical risk factors. More... »

PAGES

3191

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-21482-y

DOI

http://dx.doi.org/10.1038/s41598-018-21482-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101008531

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29453342


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiovascular Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Inflammation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Morbidity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxidation-Reduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proportional Hazards Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spain", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cardiovascular Epidemiology and Genetics Research Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.20522.37", 
          "name": [
            "CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain", 
            "Cardiovascular Epidemiology and Genetics Research Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Subirana", 
        "givenName": "Isaac", 
        "id": "sg:person.01343557353.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343557353.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), ISCIII, Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/grid.413448.e", 
          "name": [
            "Cardiovascular Risk and Nutrition Research Group, Program of Epidemiology and Public Health, IMIM, Barcelona, Spain", 
            "CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), ISCIII, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fit\u00f3", 
        "givenName": "Montserrat", 
        "id": "sg:person.01276601177.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276601177.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiovascular Epidemiology and Genetics Research Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.20522.37", 
          "name": [
            "Cardiovascular Epidemiology and Genetics Research Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Diaz", 
        "givenName": "Oscar", 
        "id": "sg:person.0650650744.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650650744.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/grid.466571.7", 
          "name": [
            "Cardiovascular Epidemiology and Genetics Research Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain", 
            "CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vila", 
        "givenName": "Joan", 
        "id": "sg:person.01064002510.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064002510.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital del Mar, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.411142.3", 
          "name": [
            "Hospital del Mar, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franc\u00e9s", 
        "givenName": "Albert", 
        "id": "sg:person.01234067244.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234067244.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad Complutense, Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4795.f", 
          "name": [
            "Universidad Complutense, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delpon", 
        "givenName": "Eva", 
        "id": "sg:person.01357352213.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357352213.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Servei de Cardiologia, INCLIVA, Departament de Medicina, Hospital Cl\u00ednico Universitario de Valencia, Universitat de Valencia, Valencia, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Servei de Cardiologia, INCLIVA, Departament de Medicina, Hospital Cl\u00ednico Universitario de Valencia, Universitat de Valencia, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanchis", 
        "givenName": "Juan", 
        "id": "sg:person.01314202430.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314202430.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CIBER of Cardiovascular Diseases (CIBERCV), ISCIII, Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/grid.413448.e", 
          "name": [
            "Cardiovascular Epidemiology and Genetics Research Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain", 
            "CIBER of Cardiovascular Diseases (CIBERCV), ISCIII, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elosua", 
        "givenName": "Roberto", 
        "id": "sg:person.01315216030.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315216030.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), ISCIII, Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/grid.413448.e", 
          "name": [
            "Cardiovascular Risk and Nutrition Research Group, Program of Epidemiology and Public Health, IMIM, Barcelona, Spain", 
            "CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), ISCIII, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mu\u00f1oz-Aguayo", 
        "givenName": "Daniel", 
        "id": "sg:person.0600714761.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600714761.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "REGICOR Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.20522.37", 
          "name": [
            "CIBER of Cardiovascular Diseases (CIBERCV), ISCIII, Madrid, Spain", 
            "REGICOR Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u00e9gano", 
        "givenName": "Irene R.", 
        "id": "sg:person.01123244462.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123244462.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "REGICOR Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.20522.37", 
          "name": [
            "CIBER of Cardiovascular Diseases (CIBERCV), ISCIII, Madrid, Spain", 
            "REGICOR Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marrugat", 
        "givenName": "Jaume", 
        "id": "sg:person.01166213677.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166213677.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2288-13-113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024776710", 
          "https://doi.org/10.1186/1471-2288-13-113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10654-013-9819-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010027917", 
          "https://doi.org/10.1007/s10654-013-9819-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02-16", 
    "datePublishedReg": "2018-02-16", 
    "description": "The effect of circulating biomarkers in predicting coronary artery disease (CAD) is not fully elucidated. This study aimed to determine the relationship with CAD and the predictive capacity of nine biomarkers of inflammation (TNF-\u03b1, IL-10, IL-6, MCP-1, CRP), oxidation (GHS-Px), and metabolism (adiponectin, leptin, and insulin). This was a case-cohort study, within the REGICOR population-cohorts (North-Eastern Spain), of 105 CAD cases and 638 individuals randomly selected from a cohort of 5,404 participants aged 35-74 years (mean follow-up\u2009=\u20096.1 years). Biomarkers' hazard ratio (HR)/standard deviation was estimated with Cox models adjusted for age, sex, and classical risk factors. Discrimination improvement and reclassification were analyzed with the c-index and the Net reclassification index (NRI). GHS-Px (adjusted HRs\u2009=\u20090.77; 95%CI:0.60-0.99), insulin (1.46; 1.08-1.98), leptin (1.40; 1.03-1.90), IL-6 (1.34; 1.03-1.74), and TNF-\u03b1 (1.80; 1.26-2.57) were significantly associated with CAD incidence. In the model adjusted for all biomarkers, TNF-\u03b1 (1.87;1.31-2.66) and insulin (1.59;1.16-2.19) were independently associated with CAD. This final model, compared to a model without biomarkers, showed a c-index difference of 1.3% (-0.7, 3.2) and a continuous NRI of 33.7% (2.6, 61.9). TNF-\u03b1 and insulin are independently associated with CAD incidence and they improve reclassification when added to a model including classical risk factors.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-018-21482-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3717059", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "coronary artery disease", 
      "net reclassification index", 
      "classical risk factors", 
      "biomarkers of inflammation", 
      "hazard ratio", 
      "CAD incidence", 
      "risk factors", 
      "continuous net reclassification index", 
      "coronary disease incidence", 
      "case-cohort study", 
      "artery disease", 
      "reclassification index", 
      "IL-6", 
      "CAD cases", 
      "discrimination improvement", 
      "Cox model", 
      "GHS-Px", 
      "TNF", 
      "biomarkers", 
      "incidence", 
      "insulin", 
      "inflammation", 
      "final model", 
      "metabolism", 
      "disease incidence", 
      "REGICOR", 
      "leptin", 
      "predictive capacity", 
      "reclassification", 
      "cohort", 
      "disease", 
      "index", 
      "age", 
      "sex", 
      "factors", 
      "study", 
      "participants", 
      "years", 
      "individuals", 
      "differences", 
      "cases", 
      "effect", 
      "improvement", 
      "relationship", 
      "model", 
      "ratio", 
      "capacity", 
      "deviation", 
      "oxidation", 
      "index difference", 
      "prediction", 
      "Biomarkers' hazard ratio"
    ], 
    "name": "Prediction of coronary disease incidence by biomarkers of inflammation, oxidation, and metabolism", 
    "pagination": "3191", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101008531"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-21482-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29453342"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-21482-y", 
      "https://app.dimensions.ai/details/publication/pub.1101008531"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_793.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-018-21482-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-21482-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-21482-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-21482-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-21482-y'


 

This table displays all metadata directly associated to this object as RDF triples.

305 TRIPLES      22 PREDICATES      102 URIs      92 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-21482-y schema:about N01aac7c6be3149bf987a3dcad811351a
2 N0231665e033d4b858ec188bccc210489
3 N0edbf463e90440658d986d79dfef0e5c
4 N16aa75b7191a4090828837de69ef0b75
5 N1d49813ea9004b0b93691c46f0fca3b5
6 N1f88d96db5974c08a220a9d365dcd3f3
7 N253a848eea4246e5a6b848f040a50673
8 N2fa897f277a44801abf189f7b4006932
9 N403915878f0b4b488f1da29024630630
10 N412c7e11157b49738e81a0d28c85d8cb
11 N539d31eb04994aa98b66336741b201bf
12 N598c14d7026b4f2a9b1249343e818cd0
13 N623188d693aa44f2a98c386ec624cc76
14 N68f1cd9942f5400ab84a4f1c634083d5
15 N77aef3010fcd4ffd8c5eac48dacf749c
16 N93a1bfd254484ab58bbed70dd3c0cb66
17 N9b462af09e324118a1518dd3a53ef704
18 N9e72127600a244b0a6d833697161858e
19 N9f8aa1d7a77243b2b59d10a2e45bda4d
20 Na93b3fb747c342bbafae877a68740fee
21 Ncf67a94b631c4f78b212490013292d70
22 Nf930b19430664226b178132def2d94d9
23 anzsrc-for:11
24 anzsrc-for:1103
25 schema:author Nf116e6d078d942be831f9c4c3dd43748
26 schema:citation sg:pub.10.1007/s10654-013-9819-6
27 sg:pub.10.1186/1471-2288-13-113
28 schema:datePublished 2018-02-16
29 schema:datePublishedReg 2018-02-16
30 schema:description The effect of circulating biomarkers in predicting coronary artery disease (CAD) is not fully elucidated. This study aimed to determine the relationship with CAD and the predictive capacity of nine biomarkers of inflammation (TNF-α, IL-10, IL-6, MCP-1, CRP), oxidation (GHS-Px), and metabolism (adiponectin, leptin, and insulin). This was a case-cohort study, within the REGICOR population-cohorts (North-Eastern Spain), of 105 CAD cases and 638 individuals randomly selected from a cohort of 5,404 participants aged 35-74 years (mean follow-up = 6.1 years). Biomarkers' hazard ratio (HR)/standard deviation was estimated with Cox models adjusted for age, sex, and classical risk factors. Discrimination improvement and reclassification were analyzed with the c-index and the Net reclassification index (NRI). GHS-Px (adjusted HRs = 0.77; 95%CI:0.60-0.99), insulin (1.46; 1.08-1.98), leptin (1.40; 1.03-1.90), IL-6 (1.34; 1.03-1.74), and TNF-α (1.80; 1.26-2.57) were significantly associated with CAD incidence. In the model adjusted for all biomarkers, TNF-α (1.87;1.31-2.66) and insulin (1.59;1.16-2.19) were independently associated with CAD. This final model, compared to a model without biomarkers, showed a c-index difference of 1.3% (-0.7, 3.2) and a continuous NRI of 33.7% (2.6, 61.9). TNF-α and insulin are independently associated with CAD incidence and they improve reclassification when added to a model including classical risk factors.
31 schema:genre article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N37a397c3f5f849ff95987199e380287f
35 Nf079401d11354653b23e22d2e52723d4
36 sg:journal.1045337
37 schema:keywords Biomarkers' hazard ratio
38 CAD cases
39 CAD incidence
40 Cox model
41 GHS-Px
42 IL-6
43 REGICOR
44 TNF
45 age
46 artery disease
47 biomarkers
48 biomarkers of inflammation
49 capacity
50 case-cohort study
51 cases
52 classical risk factors
53 cohort
54 continuous net reclassification index
55 coronary artery disease
56 coronary disease incidence
57 deviation
58 differences
59 discrimination improvement
60 disease
61 disease incidence
62 effect
63 factors
64 final model
65 hazard ratio
66 improvement
67 incidence
68 index
69 index difference
70 individuals
71 inflammation
72 insulin
73 leptin
74 metabolism
75 model
76 net reclassification index
77 oxidation
78 participants
79 prediction
80 predictive capacity
81 ratio
82 reclassification
83 reclassification index
84 relationship
85 risk factors
86 sex
87 study
88 years
89 schema:name Prediction of coronary disease incidence by biomarkers of inflammation, oxidation, and metabolism
90 schema:pagination 3191
91 schema:productId N166bfebc73ff4ccc81e9dbbe2d77c1f0
92 Ncff8d414c45b480aabf75fb24a443ae6
93 Nfb8cd9192b144b6a8c8e388cf3bd95ba
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101008531
95 https://doi.org/10.1038/s41598-018-21482-y
96 schema:sdDatePublished 2021-12-01T19:42
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher N241959039fb54b5f862ad717f2782ef3
99 schema:url https://doi.org/10.1038/s41598-018-21482-y
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N01aac7c6be3149bf987a3dcad811351a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Female
105 rdf:type schema:DefinedTerm
106 N0231665e033d4b858ec188bccc210489 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Proportional Hazards Models
108 rdf:type schema:DefinedTerm
109 N09054b79c5f844a0bedfd5c79f18c70c rdf:first sg:person.01234067244.89
110 rdf:rest Nc025390585ba4d94a7ddad7845829b1f
111 N0edbf463e90440658d986d79dfef0e5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Risk Factors
113 rdf:type schema:DefinedTerm
114 N1171eba1642a4b2284fd9bb36e7fba9e rdf:first sg:person.01314202430.10
115 rdf:rest Ne2459dcc49af450b8e60efbf22a28686
116 N166bfebc73ff4ccc81e9dbbe2d77c1f0 schema:name doi
117 schema:value 10.1038/s41598-018-21482-y
118 rdf:type schema:PropertyValue
119 N16aa75b7191a4090828837de69ef0b75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Inflammation
121 rdf:type schema:DefinedTerm
122 N1d49813ea9004b0b93691c46f0fca3b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Morbidity
124 rdf:type schema:DefinedTerm
125 N1f88d96db5974c08a220a9d365dcd3f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Coronary Artery Disease
127 rdf:type schema:DefinedTerm
128 N23d29d8964094d6091fa91bb979c573f rdf:first sg:person.0650650744.24
129 rdf:rest N319966662a3b46b4af6e6abf647e5ebc
130 N241959039fb54b5f862ad717f2782ef3 schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 N253a848eea4246e5a6b848f040a50673 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Spain
134 rdf:type schema:DefinedTerm
135 N2d3ad993e0c945deb93969cabadae684 rdf:first sg:person.01166213677.43
136 rdf:rest rdf:nil
137 N2fa897f277a44801abf189f7b4006932 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Prognosis
139 rdf:type schema:DefinedTerm
140 N319966662a3b46b4af6e6abf647e5ebc rdf:first sg:person.01064002510.96
141 rdf:rest N09054b79c5f844a0bedfd5c79f18c70c
142 N37a397c3f5f849ff95987199e380287f schema:issueNumber 1
143 rdf:type schema:PublicationIssue
144 N403915878f0b4b488f1da29024630630 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Cohort Studies
146 rdf:type schema:DefinedTerm
147 N412c7e11157b49738e81a0d28c85d8cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Incidence
149 rdf:type schema:DefinedTerm
150 N539d31eb04994aa98b66336741b201bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Humans
152 rdf:type schema:DefinedTerm
153 N598c14d7026b4f2a9b1249343e818cd0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Male
155 rdf:type schema:DefinedTerm
156 N623188d693aa44f2a98c386ec624cc76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Oxidation-Reduction
158 rdf:type schema:DefinedTerm
159 N68f1cd9942f5400ab84a4f1c634083d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Risk Assessment
161 rdf:type schema:DefinedTerm
162 N6d060961d160475ba501621b5bb9ef56 rdf:first sg:person.01123244462.39
163 rdf:rest N2d3ad993e0c945deb93969cabadae684
164 N726a235ea06946acaa8e61b89355d548 rdf:first sg:person.01276601177.82
165 rdf:rest N23d29d8964094d6091fa91bb979c573f
166 N7274adb3d8a147d889b55e1bfc067fb3 rdf:first sg:person.0600714761.38
167 rdf:rest N6d060961d160475ba501621b5bb9ef56
168 N77aef3010fcd4ffd8c5eac48dacf749c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Middle Aged
170 rdf:type schema:DefinedTerm
171 N93a1bfd254484ab58bbed70dd3c0cb66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Heart
173 rdf:type schema:DefinedTerm
174 N9b462af09e324118a1518dd3a53ef704 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Cardiovascular Diseases
176 rdf:type schema:DefinedTerm
177 N9e72127600a244b0a6d833697161858e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Aged
179 rdf:type schema:DefinedTerm
180 N9f8aa1d7a77243b2b59d10a2e45bda4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Adult
182 rdf:type schema:DefinedTerm
183 Na93b3fb747c342bbafae877a68740fee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Coronary Disease
185 rdf:type schema:DefinedTerm
186 Nc025390585ba4d94a7ddad7845829b1f rdf:first sg:person.01357352213.06
187 rdf:rest N1171eba1642a4b2284fd9bb36e7fba9e
188 Ncf67a94b631c4f78b212490013292d70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Predictive Value of Tests
190 rdf:type schema:DefinedTerm
191 Ncff8d414c45b480aabf75fb24a443ae6 schema:name dimensions_id
192 schema:value pub.1101008531
193 rdf:type schema:PropertyValue
194 Ne2459dcc49af450b8e60efbf22a28686 rdf:first sg:person.01315216030.42
195 rdf:rest N7274adb3d8a147d889b55e1bfc067fb3
196 Nf079401d11354653b23e22d2e52723d4 schema:volumeNumber 8
197 rdf:type schema:PublicationVolume
198 Nf116e6d078d942be831f9c4c3dd43748 rdf:first sg:person.01343557353.02
199 rdf:rest N726a235ea06946acaa8e61b89355d548
200 Nf930b19430664226b178132def2d94d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Biomarkers
202 rdf:type schema:DefinedTerm
203 Nfb8cd9192b144b6a8c8e388cf3bd95ba schema:name pubmed_id
204 schema:value 29453342
205 rdf:type schema:PropertyValue
206 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
207 schema:name Medical and Health Sciences
208 rdf:type schema:DefinedTerm
209 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
210 schema:name Clinical Sciences
211 rdf:type schema:DefinedTerm
212 sg:grant.3717059 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-21482-y
213 rdf:type schema:MonetaryGrant
214 sg:journal.1045337 schema:issn 2045-2322
215 schema:name Scientific Reports
216 schema:publisher Springer Nature
217 rdf:type schema:Periodical
218 sg:person.01064002510.96 schema:affiliation grid-institutes:grid.466571.7
219 schema:familyName Vila
220 schema:givenName Joan
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064002510.96
222 rdf:type schema:Person
223 sg:person.01123244462.39 schema:affiliation grid-institutes:grid.20522.37
224 schema:familyName Dégano
225 schema:givenName Irene R.
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123244462.39
227 rdf:type schema:Person
228 sg:person.01166213677.43 schema:affiliation grid-institutes:grid.20522.37
229 schema:familyName Marrugat
230 schema:givenName Jaume
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166213677.43
232 rdf:type schema:Person
233 sg:person.01234067244.89 schema:affiliation grid-institutes:grid.411142.3
234 schema:familyName Francés
235 schema:givenName Albert
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234067244.89
237 rdf:type schema:Person
238 sg:person.01276601177.82 schema:affiliation grid-institutes:grid.413448.e
239 schema:familyName Fitó
240 schema:givenName Montserrat
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276601177.82
242 rdf:type schema:Person
243 sg:person.01314202430.10 schema:affiliation grid-institutes:None
244 schema:familyName Sanchis
245 schema:givenName Juan
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314202430.10
247 rdf:type schema:Person
248 sg:person.01315216030.42 schema:affiliation grid-institutes:grid.413448.e
249 schema:familyName Elosua
250 schema:givenName Roberto
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315216030.42
252 rdf:type schema:Person
253 sg:person.01343557353.02 schema:affiliation grid-institutes:grid.20522.37
254 schema:familyName Subirana
255 schema:givenName Isaac
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343557353.02
257 rdf:type schema:Person
258 sg:person.01357352213.06 schema:affiliation grid-institutes:grid.4795.f
259 schema:familyName Delpon
260 schema:givenName Eva
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357352213.06
262 rdf:type schema:Person
263 sg:person.0600714761.38 schema:affiliation grid-institutes:grid.413448.e
264 schema:familyName Muñoz-Aguayo
265 schema:givenName Daniel
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600714761.38
267 rdf:type schema:Person
268 sg:person.0650650744.24 schema:affiliation grid-institutes:grid.20522.37
269 schema:familyName Diaz
270 schema:givenName Oscar
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650650744.24
272 rdf:type schema:Person
273 sg:pub.10.1007/s10654-013-9819-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010027917
274 https://doi.org/10.1007/s10654-013-9819-6
275 rdf:type schema:CreativeWork
276 sg:pub.10.1186/1471-2288-13-113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024776710
277 https://doi.org/10.1186/1471-2288-13-113
278 rdf:type schema:CreativeWork
279 grid-institutes:None schema:alternateName Servei de Cardiologia, INCLIVA, Departament de Medicina, Hospital Clínico Universitario de Valencia, Universitat de Valencia, Valencia, Spain
280 schema:name Servei de Cardiologia, INCLIVA, Departament de Medicina, Hospital Clínico Universitario de Valencia, Universitat de Valencia, Valencia, Spain
281 rdf:type schema:Organization
282 grid-institutes:grid.20522.37 schema:alternateName Cardiovascular Epidemiology and Genetics Research Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
283 REGICOR Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
284 schema:name CIBER of Cardiovascular Diseases (CIBERCV), ISCIII, Madrid, Spain
285 CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
286 Cardiovascular Epidemiology and Genetics Research Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
287 REGICOR Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
288 rdf:type schema:Organization
289 grid-institutes:grid.411142.3 schema:alternateName Hospital del Mar, Barcelona, Spain
290 schema:name Hospital del Mar, Barcelona, Spain
291 rdf:type schema:Organization
292 grid-institutes:grid.413448.e schema:alternateName CIBER of Cardiovascular Diseases (CIBERCV), ISCIII, Madrid, Spain
293 CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), ISCIII, Madrid, Spain
294 schema:name CIBER of Cardiovascular Diseases (CIBERCV), ISCIII, Madrid, Spain
295 CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), ISCIII, Madrid, Spain
296 Cardiovascular Epidemiology and Genetics Research Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
297 Cardiovascular Risk and Nutrition Research Group, Program of Epidemiology and Public Health, IMIM, Barcelona, Spain
298 rdf:type schema:Organization
299 grid-institutes:grid.466571.7 schema:alternateName CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
300 schema:name CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
301 Cardiovascular Epidemiology and Genetics Research Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
302 rdf:type schema:Organization
303 grid-institutes:grid.4795.f schema:alternateName Universidad Complutense, Madrid, Spain
304 schema:name Universidad Complutense, Madrid, Spain
305 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...