Prediction of coronary disease incidence by biomarkers of inflammation, oxidation, and metabolism View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Isaac Subirana, Montserrat Fitó, Oscar Diaz, Joan Vila, Albert Francés, Eva Delpon, Juan Sanchis, Roberto Elosua, Daniel Muñoz-Aguayo, Irene R. Dégano, Jaume Marrugat

ABSTRACT

The effect of circulating biomarkers in predicting coronary artery disease (CAD) is not fully elucidated. This study aimed to determine the relationship with CAD and the predictive capacity of nine biomarkers of inflammation (TNF-α, IL-10, IL-6, MCP-1, CRP), oxidation (GHS-Px), and metabolism (adiponectin, leptin, and insulin). This was a case-cohort study, within the REGICOR population-cohorts (North-Eastern Spain), of 105 CAD cases and 638 individuals randomly selected from a cohort of 5,404 participants aged 35-74 years (mean follow-up = 6.1 years). Biomarkers' hazard ratio (HR)/standard deviation was estimated with Cox models adjusted for age, sex, and classical risk factors. Discrimination improvement and reclassification were analyzed with the c-index and the Net reclassification index (NRI). GHS-Px (adjusted HRs = 0.77; 95%CI:0.60-0.99), insulin (1.46; 1.08-1.98), leptin (1.40; 1.03-1.90), IL-6 (1.34; 1.03-1.74), and TNF-α (1.80; 1.26-2.57) were significantly associated with CAD incidence. In the model adjusted for all biomarkers, TNF-α (1.87;1.31-2.66) and insulin (1.59;1.16-2.19) were independently associated with CAD. This final model, compared to a model without biomarkers, showed a c-index difference of 1.3% (-0.7, 3.2) and a continuous NRI of 33.7% (2.6, 61.9). TNF-α and insulin are independently associated with CAD incidence and they improve reclassification when added to a model including classical risk factors. More... »

PAGES

3191

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-21482-y

DOI

http://dx.doi.org/10.1038/s41598-018-21482-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101008531

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29453342


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut Hospital del Mar d'Investigacions M\u00e8diques", 
          "id": "https://www.grid.ac/institutes/grid.20522.37", 
          "name": [
            "CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain", 
            "Cardiovascular Epidemiology and Genetics Research Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Subirana", 
        "givenName": "Isaac", 
        "id": "sg:person.01343557353.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343557353.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Salud Carlos III", 
          "id": "https://www.grid.ac/institutes/grid.413448.e", 
          "name": [
            "Cardiovascular Risk and Nutrition Research Group, Program of Epidemiology and Public Health, IMIM, Barcelona, Spain", 
            "CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), ISCIII, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fit\u00f3", 
        "givenName": "Montserrat", 
        "id": "sg:person.01276601177.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276601177.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Hospital del Mar d'Investigacions M\u00e8diques", 
          "id": "https://www.grid.ac/institutes/grid.20522.37", 
          "name": [
            "Cardiovascular Epidemiology and Genetics Research Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Diaz", 
        "givenName": "Oscar", 
        "id": "sg:person.0650650744.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650650744.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Salud Carlos III", 
          "id": "https://www.grid.ac/institutes/grid.413448.e", 
          "name": [
            "Cardiovascular Epidemiology and Genetics Research Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain", 
            "CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vila", 
        "givenName": "Joan", 
        "id": "sg:person.011255026542.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255026542.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital Del Mar", 
          "id": "https://www.grid.ac/institutes/grid.411142.3", 
          "name": [
            "Hospital del Mar, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franc\u00e9s", 
        "givenName": "Albert", 
        "id": "sg:person.01234067244.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234067244.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Complutense University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.4795.f", 
          "name": [
            "Universidad Complutense, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delpon", 
        "givenName": "Eva", 
        "id": "sg:person.01357352213.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357352213.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Servei de Cardiologia, INCLIVA, Departament de Medicina, Hospital Cl\u00ednico Universitario de Valencia, Universitat de Valencia, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanchis", 
        "givenName": "Juan", 
        "id": "sg:person.01314202430.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314202430.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Salud Carlos III", 
          "id": "https://www.grid.ac/institutes/grid.413448.e", 
          "name": [
            "Cardiovascular Epidemiology and Genetics Research Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain", 
            "CIBER of Cardiovascular Diseases (CIBERCV), ISCIII, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elosua", 
        "givenName": "Roberto", 
        "id": "sg:person.01315216030.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315216030.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Salud Carlos III", 
          "id": "https://www.grid.ac/institutes/grid.413448.e", 
          "name": [
            "Cardiovascular Risk and Nutrition Research Group, Program of Epidemiology and Public Health, IMIM, Barcelona, Spain", 
            "CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), ISCIII, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mu\u00f1oz-Aguayo", 
        "givenName": "Daniel", 
        "id": "sg:person.0600714761.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600714761.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Hospital del Mar d'Investigacions M\u00e8diques", 
          "id": "https://www.grid.ac/institutes/grid.20522.37", 
          "name": [
            "CIBER of Cardiovascular Diseases (CIBERCV), ISCIII, Madrid, Spain", 
            "REGICOR Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u00e9gano", 
        "givenName": "Irene R.", 
        "id": "sg:person.01123244462.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123244462.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Hospital del Mar d'Investigacions M\u00e8diques", 
          "id": "https://www.grid.ac/institutes/grid.20522.37", 
          "name": [
            "CIBER of Cardiovascular Diseases (CIBERCV), ISCIII, Madrid, Spain", 
            "REGICOR Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marrugat", 
        "givenName": "Jaume", 
        "id": "sg:person.01166213677.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166213677.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1056/nejmoa1107477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002009626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199901143400207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003372113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/hrt.2009.170134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005677753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.109.901413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007940540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10654-013-9819-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010027917", 
          "https://doi.org/10.1007/s10654-013-9819-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.thromres.2011.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012945950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/0004-2730000003390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017993219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2012.01.358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018111998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwp112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018765102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0019852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018888761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jjcc.2008.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019619983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwr374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020395072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circgenetics.113.000630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021445466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circgenetics.113.000630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021445466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.114.013116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024373499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.114.013116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024373499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2288-13-113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024776710", 
          "https://doi.org/10.1186/1471-2288-13-113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.166.13.1368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024998103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1741826711417341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025748708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1741826711417341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025748708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2010.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026303236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molmed.2009.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027139515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm198904063201407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028503602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.0050078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039277919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehw106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041809009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/y2012-053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044274020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2008.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045203871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.101.15.1767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045626343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/cs20080581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046352368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/cs20080581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046352368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/cs20080581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046352368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2013.11.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046747402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.111.231795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047103980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.111.231795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047103980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehm115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048654038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m300127-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049290069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bcp.2009.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050339089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.metabol.2014.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050358447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/eht367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050593674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1993.10476416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/hjr.0b013e3281764429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060341364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/hjr.0b013e3281764429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060341364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1160/th05-08-0571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063290644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1160/th14-06-0509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063293786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5493/wjem.v5.i4.218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072921965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-130-6-199903160-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073703194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.117.027272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084235227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.117.027272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084235227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0166360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084276301"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The effect of circulating biomarkers in predicting coronary artery disease (CAD) is not fully elucidated. This study aimed to determine the relationship with CAD and the predictive capacity of nine biomarkers of inflammation (TNF-\u03b1, IL-10, IL-6, MCP-1, CRP), oxidation (GHS-Px), and metabolism (adiponectin, leptin, and insulin). This was a case-cohort study, within the REGICOR population-cohorts (North-Eastern Spain), of 105 CAD cases and 638 individuals randomly selected from a cohort of 5,404 participants aged 35-74 years (mean follow-up\u2009=\u20096.1 years). Biomarkers' hazard ratio (HR)/standard deviation was estimated with Cox models adjusted for age, sex, and classical risk factors. Discrimination improvement and reclassification were analyzed with the c-index and the Net reclassification index (NRI). GHS-Px (adjusted HRs\u2009=\u20090.77; 95%CI:0.60-0.99), insulin (1.46; 1.08-1.98), leptin (1.40; 1.03-1.90), IL-6 (1.34; 1.03-1.74), and TNF-\u03b1 (1.80; 1.26-2.57) were significantly associated with CAD incidence. In the model adjusted for all biomarkers, TNF-\u03b1 (1.87;1.31-2.66) and insulin (1.59;1.16-2.19) were independently associated with CAD. This final model, compared to a model without biomarkers, showed a c-index difference of 1.3% (-0.7, 3.2) and a continuous NRI of 33.7% (2.6, 61.9). TNF-\u03b1 and insulin are independently associated with CAD incidence and they improve reclassification when added to a model including classical risk factors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-21482-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3712554", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3717930", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Prediction of coronary disease incidence by biomarkers of inflammation, oxidation, and metabolism", 
    "pagination": "3191", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e9410c96af1f31a87195e2f3febf3461f303678ec9013ee9c189694f0876ce0d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29453342"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-21482-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101008531"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-21482-y", 
      "https://app.dimensions.ai/details/publication/pub.1101008531"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-21482-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-21482-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-21482-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-21482-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-21482-y'


 

This table displays all metadata directly associated to this object as RDF triples.

285 TRIPLES      21 PREDICATES      70 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-21482-y schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N4d8cb24339ea4722a6df2a0552eb89e5
4 schema:citation sg:pub.10.1007/s10654-013-9819-6
5 sg:pub.10.1186/1471-2288-13-113
6 https://doi.org/10.1001/archinte.166.13.1368
7 https://doi.org/10.1016/j.amjcard.2012.01.358
8 https://doi.org/10.1016/j.atherosclerosis.2008.02.019
9 https://doi.org/10.1016/j.atherosclerosis.2010.10.017
10 https://doi.org/10.1016/j.atherosclerosis.2013.11.069
11 https://doi.org/10.1016/j.bcp.2009.04.029
12 https://doi.org/10.1016/j.jjcc.2008.12.007
13 https://doi.org/10.1016/j.metabol.2014.06.011
14 https://doi.org/10.1016/j.molmed.2009.06.001
15 https://doi.org/10.1016/j.thromres.2011.05.015
16 https://doi.org/10.1042/cs20080581
17 https://doi.org/10.1056/nejm198904063201407
18 https://doi.org/10.1056/nejm199901143400207
19 https://doi.org/10.1056/nejmoa1107477
20 https://doi.org/10.1074/mcp.m300127-mcp200
21 https://doi.org/10.1080/01621459.1993.10476416
22 https://doi.org/10.1093/aje/kwp112
23 https://doi.org/10.1093/aje/kwr374
24 https://doi.org/10.1093/eurheartj/ehm115
25 https://doi.org/10.1093/eurheartj/eht367
26 https://doi.org/10.1093/eurheartj/ehw106
27 https://doi.org/10.1097/hjr.0b013e3281764429
28 https://doi.org/10.1136/hrt.2009.170134
29 https://doi.org/10.1139/y2012-053
30 https://doi.org/10.1160/th05-08-0571
31 https://doi.org/10.1160/th14-06-0509
32 https://doi.org/10.1161/01.cir.101.15.1767
33 https://doi.org/10.1161/atvbaha.111.231795
34 https://doi.org/10.1161/circgenetics.113.000630
35 https://doi.org/10.1161/circulationaha.109.901413
36 https://doi.org/10.1161/circulationaha.114.013116
37 https://doi.org/10.1161/circulationaha.117.027272
38 https://doi.org/10.1177/1741826711417341
39 https://doi.org/10.1371/journal.pmed.0050078
40 https://doi.org/10.1371/journal.pone.0019852
41 https://doi.org/10.1371/journal.pone.0166360
42 https://doi.org/10.1590/0004-2730000003390
43 https://doi.org/10.5493/wjem.v5.i4.218
44 https://doi.org/10.7326/0003-4819-130-6-199903160-00002
45 schema:datePublished 2018-12
46 schema:datePublishedReg 2018-12-01
47 schema:description The effect of circulating biomarkers in predicting coronary artery disease (CAD) is not fully elucidated. This study aimed to determine the relationship with CAD and the predictive capacity of nine biomarkers of inflammation (TNF-α, IL-10, IL-6, MCP-1, CRP), oxidation (GHS-Px), and metabolism (adiponectin, leptin, and insulin). This was a case-cohort study, within the REGICOR population-cohorts (North-Eastern Spain), of 105 CAD cases and 638 individuals randomly selected from a cohort of 5,404 participants aged 35-74 years (mean follow-up = 6.1 years). Biomarkers' hazard ratio (HR)/standard deviation was estimated with Cox models adjusted for age, sex, and classical risk factors. Discrimination improvement and reclassification were analyzed with the c-index and the Net reclassification index (NRI). GHS-Px (adjusted HRs = 0.77; 95%CI:0.60-0.99), insulin (1.46; 1.08-1.98), leptin (1.40; 1.03-1.90), IL-6 (1.34; 1.03-1.74), and TNF-α (1.80; 1.26-2.57) were significantly associated with CAD incidence. In the model adjusted for all biomarkers, TNF-α (1.87;1.31-2.66) and insulin (1.59;1.16-2.19) were independently associated with CAD. This final model, compared to a model without biomarkers, showed a c-index difference of 1.3% (-0.7, 3.2) and a continuous NRI of 33.7% (2.6, 61.9). TNF-α and insulin are independently associated with CAD incidence and they improve reclassification when added to a model including classical risk factors.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N871b847964c74297aa8bc8c32cc3dc8f
52 Nd33c8afad625441a84497a0b47709627
53 sg:journal.1045337
54 schema:name Prediction of coronary disease incidence by biomarkers of inflammation, oxidation, and metabolism
55 schema:pagination 3191
56 schema:productId N1bb704e723f545e9b5778a910e25d52f
57 N72d4e53c89b0469ea73ac845e59761e0
58 Nd26974ac2f5749f0a01e866321c23ebc
59 Nd3083e8533ee46be866f49a0048a32c6
60 Nf788d7268d58475b8023f5a6c6bd7b0e
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101008531
62 https://doi.org/10.1038/s41598-018-21482-y
63 schema:sdDatePublished 2019-04-10T20:43
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N194b24216d2a42ea98b074faf511e73c
66 schema:url https://www.nature.com/articles/s41598-018-21482-y
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N1500659ad7d64043adb51cde6b7aa89b rdf:first sg:person.01123244462.39
71 rdf:rest N81c650f64f964ec9a6dc23dceda6aaf4
72 N194b24216d2a42ea98b074faf511e73c schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N1bb704e723f545e9b5778a910e25d52f schema:name nlm_unique_id
75 schema:value 101563288
76 rdf:type schema:PropertyValue
77 N4b547264df794e498f3d77e392a0a0e2 rdf:first sg:person.01314202430.10
78 rdf:rest Nfa6b9417159d4d8cb3393838babf8125
79 N4d8cb24339ea4722a6df2a0552eb89e5 rdf:first sg:person.01343557353.02
80 rdf:rest N97cdade0e1cc4a2bbe0b81865729a0b5
81 N53671bd5266445aabc1350c094ccc245 rdf:first sg:person.01234067244.89
82 rdf:rest N876fef230c4a46b98cd50e95f6800900
83 N64c71300294a43b9b5b88a50aee091c1 rdf:first sg:person.0650650744.24
84 rdf:rest Nde31d67bde6f49de9a0e576a0da838af
85 N72d4e53c89b0469ea73ac845e59761e0 schema:name pubmed_id
86 schema:value 29453342
87 rdf:type schema:PropertyValue
88 N81c650f64f964ec9a6dc23dceda6aaf4 rdf:first sg:person.01166213677.43
89 rdf:rest rdf:nil
90 N871b847964c74297aa8bc8c32cc3dc8f schema:volumeNumber 8
91 rdf:type schema:PublicationVolume
92 N873d7e82106f4e0d96f320851695228f rdf:first sg:person.0600714761.38
93 rdf:rest N1500659ad7d64043adb51cde6b7aa89b
94 N876fef230c4a46b98cd50e95f6800900 rdf:first sg:person.01357352213.06
95 rdf:rest N4b547264df794e498f3d77e392a0a0e2
96 N97cdade0e1cc4a2bbe0b81865729a0b5 rdf:first sg:person.01276601177.82
97 rdf:rest N64c71300294a43b9b5b88a50aee091c1
98 Nae428f98663443aabdb8d2a3e4b824df schema:name Servei de Cardiologia, INCLIVA, Departament de Medicina, Hospital Clínico Universitario de Valencia, Universitat de Valencia, Valencia, Spain
99 rdf:type schema:Organization
100 Nd26974ac2f5749f0a01e866321c23ebc schema:name readcube_id
101 schema:value e9410c96af1f31a87195e2f3febf3461f303678ec9013ee9c189694f0876ce0d
102 rdf:type schema:PropertyValue
103 Nd3083e8533ee46be866f49a0048a32c6 schema:name doi
104 schema:value 10.1038/s41598-018-21482-y
105 rdf:type schema:PropertyValue
106 Nd33c8afad625441a84497a0b47709627 schema:issueNumber 1
107 rdf:type schema:PublicationIssue
108 Nde31d67bde6f49de9a0e576a0da838af rdf:first sg:person.011255026542.16
109 rdf:rest N53671bd5266445aabc1350c094ccc245
110 Nf788d7268d58475b8023f5a6c6bd7b0e schema:name dimensions_id
111 schema:value pub.1101008531
112 rdf:type schema:PropertyValue
113 Nfa6b9417159d4d8cb3393838babf8125 rdf:first sg:person.01315216030.42
114 rdf:rest N873d7e82106f4e0d96f320851695228f
115 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
116 schema:name Medical and Health Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
119 schema:name Clinical Sciences
120 rdf:type schema:DefinedTerm
121 sg:grant.3712554 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-21482-y
122 rdf:type schema:MonetaryGrant
123 sg:grant.3717930 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-21482-y
124 rdf:type schema:MonetaryGrant
125 sg:journal.1045337 schema:issn 2045-2322
126 schema:name Scientific Reports
127 rdf:type schema:Periodical
128 sg:person.01123244462.39 schema:affiliation https://www.grid.ac/institutes/grid.20522.37
129 schema:familyName Dégano
130 schema:givenName Irene R.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123244462.39
132 rdf:type schema:Person
133 sg:person.011255026542.16 schema:affiliation https://www.grid.ac/institutes/grid.413448.e
134 schema:familyName Vila
135 schema:givenName Joan
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255026542.16
137 rdf:type schema:Person
138 sg:person.01166213677.43 schema:affiliation https://www.grid.ac/institutes/grid.20522.37
139 schema:familyName Marrugat
140 schema:givenName Jaume
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166213677.43
142 rdf:type schema:Person
143 sg:person.01234067244.89 schema:affiliation https://www.grid.ac/institutes/grid.411142.3
144 schema:familyName Francés
145 schema:givenName Albert
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234067244.89
147 rdf:type schema:Person
148 sg:person.01276601177.82 schema:affiliation https://www.grid.ac/institutes/grid.413448.e
149 schema:familyName Fitó
150 schema:givenName Montserrat
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276601177.82
152 rdf:type schema:Person
153 sg:person.01314202430.10 schema:affiliation Nae428f98663443aabdb8d2a3e4b824df
154 schema:familyName Sanchis
155 schema:givenName Juan
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314202430.10
157 rdf:type schema:Person
158 sg:person.01315216030.42 schema:affiliation https://www.grid.ac/institutes/grid.413448.e
159 schema:familyName Elosua
160 schema:givenName Roberto
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315216030.42
162 rdf:type schema:Person
163 sg:person.01343557353.02 schema:affiliation https://www.grid.ac/institutes/grid.20522.37
164 schema:familyName Subirana
165 schema:givenName Isaac
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343557353.02
167 rdf:type schema:Person
168 sg:person.01357352213.06 schema:affiliation https://www.grid.ac/institutes/grid.4795.f
169 schema:familyName Delpon
170 schema:givenName Eva
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357352213.06
172 rdf:type schema:Person
173 sg:person.0600714761.38 schema:affiliation https://www.grid.ac/institutes/grid.413448.e
174 schema:familyName Muñoz-Aguayo
175 schema:givenName Daniel
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600714761.38
177 rdf:type schema:Person
178 sg:person.0650650744.24 schema:affiliation https://www.grid.ac/institutes/grid.20522.37
179 schema:familyName Diaz
180 schema:givenName Oscar
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650650744.24
182 rdf:type schema:Person
183 sg:pub.10.1007/s10654-013-9819-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010027917
184 https://doi.org/10.1007/s10654-013-9819-6
185 rdf:type schema:CreativeWork
186 sg:pub.10.1186/1471-2288-13-113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024776710
187 https://doi.org/10.1186/1471-2288-13-113
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1001/archinte.166.13.1368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024998103
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.amjcard.2012.01.358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018111998
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.atherosclerosis.2008.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045203871
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.atherosclerosis.2010.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026303236
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.atherosclerosis.2013.11.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046747402
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.bcp.2009.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050339089
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.jjcc.2008.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019619983
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.metabol.2014.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050358447
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.molmed.2009.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027139515
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.thromres.2011.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012945950
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1042/cs20080581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046352368
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1056/nejm198904063201407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028503602
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1056/nejm199901143400207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003372113
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1056/nejmoa1107477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002009626
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1074/mcp.m300127-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049290069
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1080/01621459.1993.10476416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304500
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/aje/kwp112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018765102
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/aje/kwr374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020395072
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/eurheartj/ehm115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048654038
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/eurheartj/eht367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050593674
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/eurheartj/ehw106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041809009
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1097/hjr.0b013e3281764429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060341364
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1136/hrt.2009.170134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005677753
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1139/y2012-053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044274020
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1160/th05-08-0571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063290644
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1160/th14-06-0509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063293786
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1161/01.cir.101.15.1767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045626343
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1161/atvbaha.111.231795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047103980
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1161/circgenetics.113.000630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021445466
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1161/circulationaha.109.901413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007940540
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1161/circulationaha.114.013116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024373499
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1161/circulationaha.117.027272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084235227
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1177/1741826711417341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025748708
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1371/journal.pmed.0050078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039277919
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1371/journal.pone.0019852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018888761
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1371/journal.pone.0166360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084276301
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1590/0004-2730000003390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017993219
262 rdf:type schema:CreativeWork
263 https://doi.org/10.5493/wjem.v5.i4.218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072921965
264 rdf:type schema:CreativeWork
265 https://doi.org/10.7326/0003-4819-130-6-199903160-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073703194
266 rdf:type schema:CreativeWork
267 https://www.grid.ac/institutes/grid.20522.37 schema:alternateName Institut Hospital del Mar d'Investigacions Mèdiques
268 schema:name CIBER of Cardiovascular Diseases (CIBERCV), ISCIII, Madrid, Spain
269 CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
270 Cardiovascular Epidemiology and Genetics Research Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
271 REGICOR Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
272 rdf:type schema:Organization
273 https://www.grid.ac/institutes/grid.411142.3 schema:alternateName Hospital Del Mar
274 schema:name Hospital del Mar, Barcelona, Spain
275 rdf:type schema:Organization
276 https://www.grid.ac/institutes/grid.413448.e schema:alternateName Instituto de Salud Carlos III
277 schema:name CIBER of Cardiovascular Diseases (CIBERCV), ISCIII, Madrid, Spain
278 CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
279 CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), ISCIII, Madrid, Spain
280 Cardiovascular Epidemiology and Genetics Research Group, Program of Epidemiology and Public Health, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
281 Cardiovascular Risk and Nutrition Research Group, Program of Epidemiology and Public Health, IMIM, Barcelona, Spain
282 rdf:type schema:Organization
283 https://www.grid.ac/institutes/grid.4795.f schema:alternateName Complutense University of Madrid
284 schema:name Universidad Complutense, Madrid, Spain
285 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...