Identifying Phase-Amplitude Coupling in Cyclic Alternating Pattern using Masking Signals View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Chien-Hung Yeh, Wenbin Shi

ABSTRACT

Judiciously classifying phase-A subtypes in cyclic alternating pattern (CAP) is critical for investigating sleep dynamics. Phase-amplitude coupling (PAC), one of the representative forms of neural rhythmic interaction, is defined as the amplitude of high-frequency activities modulated by the phase of low-frequency oscillations. To examine PACs under more or less synchronized conditions, we propose a nonlinear approach, named the masking phase-amplitude coupling (MPAC), to quantify physiological interactions between high (α/lowβ) and low (δ) frequency bands. The results reveal that the coupling intensity is generally the highest in subtype A1 and lowest in A3. MPACs among various physiological conditions/disorders (p < 0.0001) and sleep stages (p < 0.0001 except S4) are tested. MPACs are found significantly stronger in light sleep than deep sleep (p < 0.0001). Physiological conditions/disorders show similar order in MPACs. Phase-amplitude dependence between δ and α/lowβ oscillations are examined as well. δ phase tent to phase-locked to α/lowβ amplitude in subtype A1 more than the rest. These results suggest that an elevated δ-α/lowβ MPACs can reflect some synchronization in CAP. Therefore, MPAC can be a potential tool to investigate neural interactions between different time scales, and δ-α/lowβ MPAC can serve as a feasible biomarker for sleep microstructure. More... »

PAGES

2649

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-21013-9

DOI

http://dx.doi.org/10.1038/s41598-018-21013-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100796092

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29422509


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chang Gung Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413801.f", 
          "name": [
            "Department of Neurology, Chang Gung Memorial Hospital and University, Taoyuan City, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yeh", 
        "givenName": "Chien-Hung", 
        "id": "sg:person.0714757464.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714757464.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Hydraulic Engineering, State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Wenbin", 
        "id": "sg:person.011517356407.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517356407.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.physa.2014.01.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000010553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2010.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003523928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neulet.2003.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004025599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00106.2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004625999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnhum.2016.00387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006775750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep04545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007312057", 
          "https://doi.org/10.1038/srep04545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conb.2014.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007908067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0911531107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011439618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1214546110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016609015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnsys.2011.00059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018400427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1389-9457(01)00149-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018436127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.4122-11.2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023235361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2005.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024645919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2005.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024645919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1528-1167.2010.02918.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024995801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(00)00026-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025388351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2013.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026334212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2004.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027916230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.101.23.e215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032570273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1741-2560/12/2/026011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034041300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1528-1167.2006.00848.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035338881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2869.2005.00479.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037365754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2869.2005.00479.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037365754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2007.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042851442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2016.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045543953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2014.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046408666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2014.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046408666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2014.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046408666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brainresbull.2003.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046550311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1998.0193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048418364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2010.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049185721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2016.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049408227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004691-199603000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060185376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004691-199603000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060185376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004691-199603000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060185376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.761722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2016.2521612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061741069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrs.2007.907542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061777415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1793536909000047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063022921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2005.1416051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094915578"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Judiciously classifying phase-A subtypes in cyclic alternating pattern (CAP) is critical for investigating sleep dynamics. Phase-amplitude coupling (PAC), one of the representative forms of neural rhythmic interaction, is defined as the amplitude of high-frequency activities modulated by the phase of low-frequency oscillations. To examine PACs under more or less synchronized conditions, we propose a nonlinear approach, named the masking phase-amplitude coupling (MPAC), to quantify physiological interactions between high (\u03b1/low\u03b2) and low (\u03b4) frequency bands. The results reveal that the coupling intensity is generally the highest in subtype A1 and lowest in A3. MPACs among various physiological conditions/disorders (p\u2009<\u20090.0001) and sleep stages (p\u2009<\u20090.0001 except S4) are tested. MPACs are found significantly stronger in light sleep than deep sleep (p\u2009<\u20090.0001). Physiological conditions/disorders show similar order in MPACs. Phase-amplitude dependence between \u03b4 and \u03b1/low\u03b2 oscillations are examined as well. \u03b4 phase tent to phase-locked to \u03b1/low\u03b2 amplitude in subtype A1 more than the rest. These results suggest that an elevated \u03b4-\u03b1/low\u03b2 MPACs can reflect some synchronization in CAP. Therefore, MPAC can be a potential tool to investigate neural interactions between different time scales, and \u03b4-\u03b1/low\u03b2 MPAC can serve as a feasible biomarker for sleep microstructure.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-21013-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Identifying Phase-Amplitude Coupling in Cyclic Alternating Pattern using Masking Signals", 
    "pagination": "2649", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1614b6f6221240d93940c10f132ae13e813166294274ab4c61982f79957b5094"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29422509"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-21013-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100796092"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-21013-9", 
      "https://app.dimensions.ai/details/publication/pub.1100796092"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000552.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-21013-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-21013-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-21013-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-21013-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-21013-9'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-21013-9 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N7a96f218b6d244319ee4567fbacd8dc3
4 schema:citation sg:pub.10.1038/srep04545
5 https://doi.org/10.1016/j.brainresbull.2003.12.013
6 https://doi.org/10.1016/j.clinph.2004.09.021
7 https://doi.org/10.1016/j.clinph.2016.01.015
8 https://doi.org/10.1016/j.conb.2014.08.002
9 https://doi.org/10.1016/j.jneumeth.2013.08.008
10 https://doi.org/10.1016/j.jneumeth.2014.01.006
11 https://doi.org/10.1016/j.neulet.2003.10.014
12 https://doi.org/10.1016/j.neuron.2010.04.020
13 https://doi.org/10.1016/j.physa.2014.01.020
14 https://doi.org/10.1016/j.physa.2016.02.012
15 https://doi.org/10.1016/j.tics.2005.08.011
16 https://doi.org/10.1016/j.tics.2007.05.003
17 https://doi.org/10.1016/j.tics.2010.09.001
18 https://doi.org/10.1016/s0893-6080(00)00026-5
19 https://doi.org/10.1016/s1389-9457(01)00149-6
20 https://doi.org/10.1073/pnas.0911531107
21 https://doi.org/10.1073/pnas.1214546110
22 https://doi.org/10.1088/1741-2560/12/2/026011
23 https://doi.org/10.1097/00004691-199603000-00005
24 https://doi.org/10.1098/rspa.1998.0193
25 https://doi.org/10.1109/72.761722
26 https://doi.org/10.1109/icassp.2005.1416051
27 https://doi.org/10.1109/tnsre.2016.2521612
28 https://doi.org/10.1109/tpwrs.2007.907542
29 https://doi.org/10.1111/j.1365-2869.2005.00479.x
30 https://doi.org/10.1111/j.1528-1167.2006.00848.x
31 https://doi.org/10.1111/j.1528-1167.2010.02918.x
32 https://doi.org/10.1142/s1793536909000047
33 https://doi.org/10.1152/jn.00106.2010
34 https://doi.org/10.1161/01.cir.101.23.e215
35 https://doi.org/10.1523/jneurosci.4122-11.2012
36 https://doi.org/10.3389/fnhum.2016.00387
37 https://doi.org/10.3389/fnsys.2011.00059
38 schema:datePublished 2018-12
39 schema:datePublishedReg 2018-12-01
40 schema:description Judiciously classifying phase-A subtypes in cyclic alternating pattern (CAP) is critical for investigating sleep dynamics. Phase-amplitude coupling (PAC), one of the representative forms of neural rhythmic interaction, is defined as the amplitude of high-frequency activities modulated by the phase of low-frequency oscillations. To examine PACs under more or less synchronized conditions, we propose a nonlinear approach, named the masking phase-amplitude coupling (MPAC), to quantify physiological interactions between high (α/lowβ) and low (δ) frequency bands. The results reveal that the coupling intensity is generally the highest in subtype A1 and lowest in A3. MPACs among various physiological conditions/disorders (p < 0.0001) and sleep stages (p < 0.0001 except S4) are tested. MPACs are found significantly stronger in light sleep than deep sleep (p < 0.0001). Physiological conditions/disorders show similar order in MPACs. Phase-amplitude dependence between δ and α/lowβ oscillations are examined as well. δ phase tent to phase-locked to α/lowβ amplitude in subtype A1 more than the rest. These results suggest that an elevated δ-α/lowβ MPACs can reflect some synchronization in CAP. Therefore, MPAC can be a potential tool to investigate neural interactions between different time scales, and δ-α/lowβ MPAC can serve as a feasible biomarker for sleep microstructure.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N02dd12bf3a8f409284dd3439f23b9270
45 N6efde2513dec44d8b8a077044a87524a
46 sg:journal.1045337
47 schema:name Identifying Phase-Amplitude Coupling in Cyclic Alternating Pattern using Masking Signals
48 schema:pagination 2649
49 schema:productId N23ead8b5574a44c8836df793d2dd5d4c
50 N37a1fc802d694654bf292f36022247c1
51 N71e0390ec48d4db796cc72b265f14737
52 N84772fddd36b45298213914b31f7edce
53 Ncf6e6953c6b04cd190d7cd991af65adb
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100796092
55 https://doi.org/10.1038/s41598-018-21013-9
56 schema:sdDatePublished 2019-04-10T22:40
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N5c9af64b28294149962671f082c10009
59 schema:url https://www.nature.com/articles/s41598-018-21013-9
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N02dd12bf3a8f409284dd3439f23b9270 schema:volumeNumber 8
64 rdf:type schema:PublicationVolume
65 N23ead8b5574a44c8836df793d2dd5d4c schema:name nlm_unique_id
66 schema:value 101563288
67 rdf:type schema:PropertyValue
68 N26443d2ce72a4abb9f462079037b6b34 rdf:first sg:person.011517356407.96
69 rdf:rest rdf:nil
70 N37a1fc802d694654bf292f36022247c1 schema:name pubmed_id
71 schema:value 29422509
72 rdf:type schema:PropertyValue
73 N5c9af64b28294149962671f082c10009 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N6efde2513dec44d8b8a077044a87524a schema:issueNumber 1
76 rdf:type schema:PublicationIssue
77 N71e0390ec48d4db796cc72b265f14737 schema:name doi
78 schema:value 10.1038/s41598-018-21013-9
79 rdf:type schema:PropertyValue
80 N7a96f218b6d244319ee4567fbacd8dc3 rdf:first sg:person.0714757464.04
81 rdf:rest N26443d2ce72a4abb9f462079037b6b34
82 N84772fddd36b45298213914b31f7edce schema:name readcube_id
83 schema:value 1614b6f6221240d93940c10f132ae13e813166294274ab4c61982f79957b5094
84 rdf:type schema:PropertyValue
85 Ncf6e6953c6b04cd190d7cd991af65adb schema:name dimensions_id
86 schema:value pub.1100796092
87 rdf:type schema:PropertyValue
88 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
89 schema:name Medical and Health Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
92 schema:name Neurosciences
93 rdf:type schema:DefinedTerm
94 sg:journal.1045337 schema:issn 2045-2322
95 schema:name Scientific Reports
96 rdf:type schema:Periodical
97 sg:person.011517356407.96 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
98 schema:familyName Shi
99 schema:givenName Wenbin
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517356407.96
101 rdf:type schema:Person
102 sg:person.0714757464.04 schema:affiliation https://www.grid.ac/institutes/grid.413801.f
103 schema:familyName Yeh
104 schema:givenName Chien-Hung
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714757464.04
106 rdf:type schema:Person
107 sg:pub.10.1038/srep04545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007312057
108 https://doi.org/10.1038/srep04545
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.brainresbull.2003.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046550311
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.clinph.2004.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027916230
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.clinph.2016.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049408227
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.conb.2014.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007908067
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.jneumeth.2013.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026334212
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.jneumeth.2014.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046408666
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.neulet.2003.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004025599
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.neuron.2010.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049185721
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.physa.2014.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000010553
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.physa.2016.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045543953
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.tics.2005.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024645919
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.tics.2007.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042851442
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.tics.2010.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003523928
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0893-6080(00)00026-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025388351
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s1389-9457(01)00149-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018436127
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1073/pnas.0911531107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011439618
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1073/pnas.1214546110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016609015
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1088/1741-2560/12/2/026011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034041300
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1097/00004691-199603000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060185376
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1098/rspa.1998.0193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048418364
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/72.761722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219195
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/icassp.2005.1416051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094915578
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/tnsre.2016.2521612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061741069
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/tpwrs.2007.907542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061777415
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1111/j.1365-2869.2005.00479.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037365754
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1111/j.1528-1167.2006.00848.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035338881
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1111/j.1528-1167.2010.02918.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024995801
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1142/s1793536909000047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063022921
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1152/jn.00106.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004625999
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1161/01.cir.101.23.e215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032570273
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1523/jneurosci.4122-11.2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023235361
171 rdf:type schema:CreativeWork
172 https://doi.org/10.3389/fnhum.2016.00387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006775750
173 rdf:type schema:CreativeWork
174 https://doi.org/10.3389/fnsys.2011.00059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018400427
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
177 schema:name Department of Hydraulic Engineering, State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.413801.f schema:alternateName Chang Gung Memorial Hospital
180 schema:name Department of Neurology, Chang Gung Memorial Hospital and University, Taoyuan City, Taiwan
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...