Microscale Gene Expression Analysis of Tumor-Associated Macrophages View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Kuldeep S. Attri, Kamiya Mehla, Surendra K. Shukla, Pankaj K. Singh

ABSTRACT

Macrophages, apart from being the key effector cells of the innate immune system, also play critical roles during the development and progression of various complex diseases, including cancer. Tumor-associated macrophages, infiltrate tumors during different stages of cancer progression to regulate motility, invasion, and intravasation to metastatic sites. Macrophages can exist in different polarization states associated with unique function in tumors. Since tumor-associated macrophages constitute a very small proportion of tumor cells, analysis of gene expression pattern using normal extraction buffer-based methods remains a challenging task. Therefore, it is imperative to develop low-throughput strategies to investigate transcriptional regulations from a small number of immune cells. Here, we describe an efficient, sensitive, and cost-effective approach for gene expression analysis of a small number of fluorescence-activated sorted tumor-associated macrophages. Our analyses from the different number of stable, primary, and sorted macrophages suggest 5,000 cells is an optimal number for performing quantitative, real-time PCR analysis of multiple genes. Our studies could detect expression of macrophage-specific genes from cultured primary macrophages, and FACS-sorted macrophages from different biological tissues without introducing biases in comparative gene expression ratios. In conclusion, our kit-based method for quantitative gene expression analysis from a small number of cells found in biological tissues will provide an opportunity to study cell-specific, transcriptional changes. More... »

PAGES

2408

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-20820-4

DOI

http://dx.doi.org/10.1038/s41598-018-20820-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100726987

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29402936


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Nebraska Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.266813.8", 
          "name": [
            "The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Attri", 
        "givenName": "Kuldeep S.", 
        "id": "sg:person.01155034534.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155034534.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nebraska Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.266813.8", 
          "name": [
            "The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehla", 
        "givenName": "Kamiya", 
        "id": "sg:person.01072440127.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072440127.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nebraska Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.266813.8", 
          "name": [
            "The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shukla", 
        "givenName": "Surendra K.", 
        "id": "sg:person.0602433274.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602433274.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nebraska Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.266813.8", 
          "name": [
            "The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA", 
            "Department of Biochemistry and Molecular biology, University of Nebraska Medical Center, Omaha, Nebraska, USA", 
            "Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA", 
            "Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Pankaj K.", 
        "id": "sg:person.01261146267.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261146267.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.immuni.2014.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000352461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3.6.317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001380206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.immuni.2015.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001727531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.immuni.2015.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001727531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci44490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003359834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep14273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004238688", 
          "https://doi.org/10.1038/srep14273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/pdb.prot5439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004633720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0119751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007475752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010372865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1881410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013772291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep30347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015041713", 
          "https://doi.org/10.1038/srep30347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2015.01.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015155844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2015.01.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015155844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.2890204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015586585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-12-2731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018945677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1100/2011/213962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019669031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd3870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025420733", 
          "https://doi.org/10.1038/nrd3870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fimmu.2014.00514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027026723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0009539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027537274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/icb.2014.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029831011", 
          "https://doi.org/10.1038/icb.2014.22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030350290", 
          "https://doi.org/10.1038/ncomms8158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4049/jimmunol.1500325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031622074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/pdb.prot5080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033678033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4049/jimmunol.164.12.6166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036923921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/cancers6031670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037523930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep30110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038623522", 
          "https://doi.org/10.1038/srep30110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-2-235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038926852", 
          "https://doi.org/10.1186/1756-0500-2-235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5483/bmbrep.2013.46.3.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039444809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0072463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039845316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fimmu.2014.00614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040649017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040765827", 
          "https://doi.org/10.1038/ncomms11414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2016.03.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044498044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-015-0683-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046820838", 
          "https://doi.org/10.1186/s13059-015-0683-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-015-0683-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046820838", 
          "https://doi.org/10.1186/s13059-015-0683-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.990110803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050434722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.990110803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050434722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep12859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051633658", 
          "https://doi.org/10.1038/srep12859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051746006", 
          "https://doi.org/10.1038/nature12034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1541-7786.mcr-16-0156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063277726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4049/jimmunol.1502364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079226347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4049/jimmunol.1502364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079226347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4049/jimmunol.1502364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079226347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082972433", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Macrophages, apart from being the key effector cells of the innate immune system, also play critical roles during the development and progression of various complex diseases, including cancer. Tumor-associated macrophages, infiltrate tumors during different stages of cancer progression to regulate motility, invasion, and intravasation to metastatic sites. Macrophages can exist in different polarization states associated with unique function in tumors. Since tumor-associated macrophages constitute a very small proportion of tumor cells, analysis of gene expression pattern using normal extraction buffer-based methods remains a challenging task. Therefore, it is imperative to develop low-throughput strategies to investigate transcriptional regulations from a small number of immune cells. Here, we describe an efficient, sensitive, and cost-effective approach for gene expression analysis of a small number of fluorescence-activated sorted tumor-associated macrophages. Our analyses from the different number of stable, primary, and sorted macrophages suggest 5,000 cells is an optimal number for performing quantitative, real-time PCR analysis of multiple genes. Our studies could detect expression of macrophage-specific genes from cultured primary macrophages, and FACS-sorted macrophages from different biological tissues without introducing biases in comparative gene expression ratios. In conclusion, our kit-based method for quantitative gene expression analysis from a small number of cells found in biological tissues will provide an opportunity to study cell-specific, transcriptional changes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-20820-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2481680", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2438847", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2440225", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6618138", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6500665", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Microscale Gene Expression Analysis of Tumor-Associated Macrophages", 
    "pagination": "2408", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "74e76341b5b26947d27a06a86e1c2ee0550b41fa1c5a85cc37bc63285692bb96"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29402936"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-20820-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100726987"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-20820-4", 
      "https://app.dimensions.ai/details/publication/pub.1100726987"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000575.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-20820-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-20820-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-20820-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-20820-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-20820-4'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      66 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-20820-4 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N579a3bd808744db794b6d8bd699fc5d0
4 schema:citation sg:pub.10.1038/icb.2014.22
5 sg:pub.10.1038/nature12034
6 sg:pub.10.1038/ncomms11414
7 sg:pub.10.1038/ncomms8158
8 sg:pub.10.1038/nrd3870
9 sg:pub.10.1038/srep12859
10 sg:pub.10.1038/srep14273
11 sg:pub.10.1038/srep30110
12 sg:pub.10.1038/srep30347
13 sg:pub.10.1186/1756-0500-2-235
14 sg:pub.10.1186/s13059-015-0683-4
15 https://app.dimensions.ai/details/publication/pub.1082972433
16 https://doi.org/10.1002/cyto.990110803
17 https://doi.org/10.1016/j.cell.2016.03.029
18 https://doi.org/10.1016/j.celrep.2015.01.040
19 https://doi.org/10.1016/j.immuni.2014.06.010
20 https://doi.org/10.1016/j.immuni.2015.07.016
21 https://doi.org/10.1093/nar/gkt965
22 https://doi.org/10.1100/2011/213962
23 https://doi.org/10.1101/gad.1881410
24 https://doi.org/10.1101/gr.2890204
25 https://doi.org/10.1101/gr.3.6.317
26 https://doi.org/10.1101/pdb.prot5080
27 https://doi.org/10.1101/pdb.prot5439
28 https://doi.org/10.1158/0008-5472.can-12-2731
29 https://doi.org/10.1158/1541-7786.mcr-16-0156
30 https://doi.org/10.1172/jci44490
31 https://doi.org/10.1371/journal.pone.0009539
32 https://doi.org/10.1371/journal.pone.0072463
33 https://doi.org/10.1371/journal.pone.0119751
34 https://doi.org/10.3389/fimmu.2014.00514
35 https://doi.org/10.3389/fimmu.2014.00614
36 https://doi.org/10.3390/cancers6031670
37 https://doi.org/10.4049/jimmunol.1500325
38 https://doi.org/10.4049/jimmunol.1502364
39 https://doi.org/10.4049/jimmunol.164.12.6166
40 https://doi.org/10.5483/bmbrep.2013.46.3.036
41 schema:datePublished 2018-12
42 schema:datePublishedReg 2018-12-01
43 schema:description Macrophages, apart from being the key effector cells of the innate immune system, also play critical roles during the development and progression of various complex diseases, including cancer. Tumor-associated macrophages, infiltrate tumors during different stages of cancer progression to regulate motility, invasion, and intravasation to metastatic sites. Macrophages can exist in different polarization states associated with unique function in tumors. Since tumor-associated macrophages constitute a very small proportion of tumor cells, analysis of gene expression pattern using normal extraction buffer-based methods remains a challenging task. Therefore, it is imperative to develop low-throughput strategies to investigate transcriptional regulations from a small number of immune cells. Here, we describe an efficient, sensitive, and cost-effective approach for gene expression analysis of a small number of fluorescence-activated sorted tumor-associated macrophages. Our analyses from the different number of stable, primary, and sorted macrophages suggest 5,000 cells is an optimal number for performing quantitative, real-time PCR analysis of multiple genes. Our studies could detect expression of macrophage-specific genes from cultured primary macrophages, and FACS-sorted macrophages from different biological tissues without introducing biases in comparative gene expression ratios. In conclusion, our kit-based method for quantitative gene expression analysis from a small number of cells found in biological tissues will provide an opportunity to study cell-specific, transcriptional changes.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N91e2890571984745917f20a125915286
48 Na68016b3a79f40fc8d27f771d191b417
49 sg:journal.1045337
50 schema:name Microscale Gene Expression Analysis of Tumor-Associated Macrophages
51 schema:pagination 2408
52 schema:productId N5175f257f24f4dcc92302d80a75eb28a
53 N5564bcde548942d6ae844853bacc092f
54 N5e2cc75f2b1740e598cb7256556da55e
55 N7df986ce02b64b9fb19daa769b84aa54
56 N8eabe02bb7004a169df41ad8b1e5e19c
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100726987
58 https://doi.org/10.1038/s41598-018-20820-4
59 schema:sdDatePublished 2019-04-10T18:29
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Ncec1b696203a41d5bdc0d0c4d318fec7
62 schema:url https://www.nature.com/articles/s41598-018-20820-4
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N5175f257f24f4dcc92302d80a75eb28a schema:name pubmed_id
67 schema:value 29402936
68 rdf:type schema:PropertyValue
69 N5564bcde548942d6ae844853bacc092f schema:name doi
70 schema:value 10.1038/s41598-018-20820-4
71 rdf:type schema:PropertyValue
72 N579a3bd808744db794b6d8bd699fc5d0 rdf:first sg:person.01155034534.98
73 rdf:rest Ne91a6fe4f69549c9bc083594f163a315
74 N5e2cc75f2b1740e598cb7256556da55e schema:name readcube_id
75 schema:value 74e76341b5b26947d27a06a86e1c2ee0550b41fa1c5a85cc37bc63285692bb96
76 rdf:type schema:PropertyValue
77 N7df986ce02b64b9fb19daa769b84aa54 schema:name dimensions_id
78 schema:value pub.1100726987
79 rdf:type schema:PropertyValue
80 N8eabe02bb7004a169df41ad8b1e5e19c schema:name nlm_unique_id
81 schema:value 101563288
82 rdf:type schema:PropertyValue
83 N91e2890571984745917f20a125915286 schema:volumeNumber 8
84 rdf:type schema:PublicationVolume
85 N9ff4e187a9f04a259227f60c1b6ca787 rdf:first sg:person.0602433274.98
86 rdf:rest Ne5f558fba03842dc885e54b418199ffa
87 Na68016b3a79f40fc8d27f771d191b417 schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 Ncec1b696203a41d5bdc0d0c4d318fec7 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Ne5f558fba03842dc885e54b418199ffa rdf:first sg:person.01261146267.06
92 rdf:rest rdf:nil
93 Ne91a6fe4f69549c9bc083594f163a315 rdf:first sg:person.01072440127.58
94 rdf:rest N9ff4e187a9f04a259227f60c1b6ca787
95 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
96 schema:name Biological Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
99 schema:name Genetics
100 rdf:type schema:DefinedTerm
101 sg:grant.2438847 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-20820-4
102 rdf:type schema:MonetaryGrant
103 sg:grant.2440225 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-20820-4
104 rdf:type schema:MonetaryGrant
105 sg:grant.2481680 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-20820-4
106 rdf:type schema:MonetaryGrant
107 sg:grant.6500665 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-20820-4
108 rdf:type schema:MonetaryGrant
109 sg:grant.6618138 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-20820-4
110 rdf:type schema:MonetaryGrant
111 sg:journal.1045337 schema:issn 2045-2322
112 schema:name Scientific Reports
113 rdf:type schema:Periodical
114 sg:person.01072440127.58 schema:affiliation https://www.grid.ac/institutes/grid.266813.8
115 schema:familyName Mehla
116 schema:givenName Kamiya
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072440127.58
118 rdf:type schema:Person
119 sg:person.01155034534.98 schema:affiliation https://www.grid.ac/institutes/grid.266813.8
120 schema:familyName Attri
121 schema:givenName Kuldeep S.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155034534.98
123 rdf:type schema:Person
124 sg:person.01261146267.06 schema:affiliation https://www.grid.ac/institutes/grid.266813.8
125 schema:familyName Singh
126 schema:givenName Pankaj K.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261146267.06
128 rdf:type schema:Person
129 sg:person.0602433274.98 schema:affiliation https://www.grid.ac/institutes/grid.266813.8
130 schema:familyName Shukla
131 schema:givenName Surendra K.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602433274.98
133 rdf:type schema:Person
134 sg:pub.10.1038/icb.2014.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029831011
135 https://doi.org/10.1038/icb.2014.22
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nature12034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051746006
138 https://doi.org/10.1038/nature12034
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/ncomms11414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040765827
141 https://doi.org/10.1038/ncomms11414
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/ncomms8158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030350290
144 https://doi.org/10.1038/ncomms8158
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nrd3870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025420733
147 https://doi.org/10.1038/nrd3870
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/srep12859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051633658
150 https://doi.org/10.1038/srep12859
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/srep14273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004238688
153 https://doi.org/10.1038/srep14273
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/srep30110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038623522
156 https://doi.org/10.1038/srep30110
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/srep30347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015041713
159 https://doi.org/10.1038/srep30347
160 rdf:type schema:CreativeWork
161 sg:pub.10.1186/1756-0500-2-235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038926852
162 https://doi.org/10.1186/1756-0500-2-235
163 rdf:type schema:CreativeWork
164 sg:pub.10.1186/s13059-015-0683-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046820838
165 https://doi.org/10.1186/s13059-015-0683-4
166 rdf:type schema:CreativeWork
167 https://app.dimensions.ai/details/publication/pub.1082972433 schema:CreativeWork
168 https://doi.org/10.1002/cyto.990110803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050434722
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.cell.2016.03.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044498044
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.celrep.2015.01.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015155844
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.immuni.2014.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000352461
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.immuni.2015.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001727531
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1093/nar/gkt965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010372865
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1100/2011/213962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019669031
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1101/gad.1881410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013772291
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1101/gr.2890204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015586585
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1101/gr.3.6.317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001380206
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1101/pdb.prot5080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033678033
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1101/pdb.prot5439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004633720
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1158/0008-5472.can-12-2731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018945677
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1158/1541-7786.mcr-16-0156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063277726
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1172/jci44490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003359834
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1371/journal.pone.0009539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027537274
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1371/journal.pone.0072463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039845316
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1371/journal.pone.0119751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007475752
203 rdf:type schema:CreativeWork
204 https://doi.org/10.3389/fimmu.2014.00514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027026723
205 rdf:type schema:CreativeWork
206 https://doi.org/10.3389/fimmu.2014.00614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040649017
207 rdf:type schema:CreativeWork
208 https://doi.org/10.3390/cancers6031670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037523930
209 rdf:type schema:CreativeWork
210 https://doi.org/10.4049/jimmunol.1500325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031622074
211 rdf:type schema:CreativeWork
212 https://doi.org/10.4049/jimmunol.1502364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079226347
213 rdf:type schema:CreativeWork
214 https://doi.org/10.4049/jimmunol.164.12.6166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036923921
215 rdf:type schema:CreativeWork
216 https://doi.org/10.5483/bmbrep.2013.46.3.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039444809
217 rdf:type schema:CreativeWork
218 https://www.grid.ac/institutes/grid.266813.8 schema:alternateName University of Nebraska Medical Center
219 schema:name Department of Biochemistry and Molecular biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
220 Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
221 Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
222 The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...