A Two-Stage Whole-Genome Gene Expression Association Study of Young-Onset Hypertension in Han Chinese Population of Taiwan View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-01-29

AUTHORS

Kuang-Mao Chiang, Hsin-Chou Yang, Wen-Harn Pan

ABSTRACT

Hypertension is an important public health problem in the world. Since the intermediate position of the gene expression between genotype and phenotype makes it suitable to link genotype to phenotype, we carried out a two-stage whole-genome gene expression association study to find differentially expressed genes and pathways for hypertension. In the first stage, 126 cases and 149 controls were used to find out the differentially expressed genes. In the second stage, an independent set of samples (127 cases and 150 controls) was used to validate the results. Additionally, we conducted a gene set enrichment analysis (GSEA) to search for differentially affected pathways. A total of nine genes were implicated in the first stage (Bonferroni-corrected p-value < 0.05). Among these genes, ZRANB1, FAM110A, PREP, ANKRD9 and LAMB2 were also differentially expressed in an existing database of hypertensive mouse model (GSE19817). A total of 16 pathways were identified by the GSEA. ZRANB1 and six pathways identified are related to TNF-α. Three pathways are related to interleukin, one to metabolic syndrome, and one to Hedgehog signaling. Identification of these genes and pathways suggest the importance of 1. inflammation, 2. visceral fat metabolism, and 3. adipocytes and osteocytes homeostasis in hypertension mechanisms and complications. More... »

PAGES

1800

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-19520-w

DOI

http://dx.doi.org/10.1038/s41598-018-19520-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100592830

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29379041


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asian Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypertension", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Taiwan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ubiquitin-Specific Proteases", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.482251.8", 
          "name": [
            "Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chiang", 
        "givenName": "Kuang-Mao", 
        "id": "sg:person.01142172345.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142172345.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Statistical Science, Academia Sinica, Taipei, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.422824.a", 
          "name": [
            "Institute of Statistical Science, Academia Sinica, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Hsin-Chou", 
        "id": "sg:person.0605363446.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605363446.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.482251.8", 
          "name": [
            "Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Wen-Harn", 
        "id": "sg:person.01032700233.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032700233.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10528-007-9130-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017420937", 
          "https://doi.org/10.1007/s10528-007-9130-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:nere.0000023608.29741.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038242490", 
          "https://doi.org/10.1023/b:nere.0000023608.29741.45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045268426", 
          "https://doi.org/10.1038/nrg1964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12265-010-9183-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047167230", 
          "https://doi.org/10.1007/s12265-010-9183-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1758-5996-6-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038942181", 
          "https://doi.org/10.1186/1758-5996-6-12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013710656", 
          "https://doi.org/10.1038/ng1094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012892309", 
          "https://doi.org/10.1038/nrg2383"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01-29", 
    "datePublishedReg": "2018-01-29", 
    "description": "Hypertension is an important public health problem in the world. Since the intermediate position of the gene expression between genotype and phenotype makes it suitable to link genotype to phenotype, we carried out a two-stage whole-genome gene expression association study to find differentially expressed genes and pathways for hypertension. In the first stage, 126 cases and 149 controls were used to find out the differentially expressed genes. In the second stage, an independent set of samples (127 cases and 150 controls) was used to validate the results. Additionally, we conducted a gene set enrichment analysis (GSEA) to search for differentially affected pathways. A total of nine genes were implicated in the first stage (Bonferroni-corrected p-value\u2009<\u20090.05). Among these genes, ZRANB1, FAM110A, PREP, ANKRD9 and LAMB2 were also differentially expressed in an existing database of hypertensive mouse model (GSE19817). A total of 16 pathways were identified by the GSEA. ZRANB1 and six pathways identified are related to TNF-\u03b1. Three pathways are related to interleukin, one to metabolic syndrome, and one to Hedgehog signaling. Identification of these genes and pathways suggest the importance of 1. inflammation, 2. visceral fat metabolism, and 3. adipocytes and osteocytes homeostasis in hypertension mechanisms and complications.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-018-19520-w", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "association studies", 
      "enrichment analysis", 
      "gene expression", 
      "genes", 
      "ZRANB1", 
      "pathway", 
      "phenotype", 
      "fat metabolism", 
      "young-onset hypertension", 
      "genotypes", 
      "ANKRD9", 
      "Han Chinese population", 
      "mouse model", 
      "hedgehog", 
      "intermediate position", 
      "GSEA", 
      "homeostasis", 
      "adipocytes", 
      "LAMB2", 
      "expression", 
      "metabolism", 
      "stage", 
      "identification", 
      "mechanism", 
      "independent set", 
      "population", 
      "Chinese population", 
      "hypertension mechanisms", 
      "hypertensive mouse model", 
      "TNF", 
      "importance", 
      "study", 
      "analysis", 
      "total", 
      "control", 
      "interleukin", 
      "inflammation", 
      "database", 
      "position", 
      "metabolic syndrome", 
      "first stage", 
      "results", 
      "set", 
      "world", 
      "samples", 
      "syndrome", 
      "whole", 
      "Taiwan", 
      "model", 
      "public health problem", 
      "health problems", 
      "important public health problem", 
      "second stage", 
      "cases", 
      "PrEP", 
      "hypertension", 
      "problem", 
      "complications", 
      "two-stage whole-genome gene expression association study", 
      "whole-genome gene expression association study", 
      "gene expression association study", 
      "expression association study", 
      "FAM110A", 
      "visceral fat metabolism", 
      "Two-Stage Whole", 
      "Genome Gene Expression Association Study"
    ], 
    "name": "A Two-Stage Whole-Genome Gene Expression Association Study of Young-Onset Hypertension in Han Chinese Population of Taiwan", 
    "pagination": "1800", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100592830"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-19520-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29379041"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-19520-w", 
      "https://app.dimensions.ai/details/publication/pub.1100592830"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_788.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-018-19520-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-19520-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-19520-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-19520-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-19520-w'


 

This table displays all metadata directly associated to this object as RDF triples.

244 TRIPLES      22 PREDICATES      117 URIs      102 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-19520-w schema:about N0681d8b21aac404c87a9d101a49eadb9
2 N085aa144bae940169af5b522ce1fabd1
3 N114635ed3a2b43ffa1e0e4fdbf323830
4 N143d8b2e0e6640ccbdb314e70361ebec
5 N1d7a2dfffdb04a75b926660ec0d744fb
6 N28bbc8c8b68a4aa0830d7948a2c4c5f2
7 N2b1ed3bfcc0c4aa188e2683c857ee685
8 N33d9540cbb4246c88006015d6e3472c4
9 N5bd84ae34d7546f3881ea0bea699f7ae
10 N63f1565752b0418691bb81e2fdd82a99
11 N6bb1674144d945cdba2b12b3f3aee979
12 N764b2831f5bb45eea54455b1b3305bd7
13 N78f0054d98e44adf989ad0071ec9d1cf
14 N936eae34d1e5471c996d13aa0369c303
15 N9a6228fa0620480f905ae4b2c13d6a49
16 Na7c04b334cc6449b881fe6069cae6474
17 Nc97ecb2aa2614f82baa2fe21a704ee08
18 Nddc8c6d9018e44b093fc8d2bf73475f4
19 anzsrc-for:06
20 anzsrc-for:0604
21 schema:author N09c46ba776f64e799139a6f776e47899
22 schema:citation sg:pub.10.1007/s10528-007-9130-x
23 sg:pub.10.1007/s12265-010-9183-9
24 sg:pub.10.1023/b:nere.0000023608.29741.45
25 sg:pub.10.1038/ng1094
26 sg:pub.10.1038/nrg1964
27 sg:pub.10.1038/nrg2383
28 sg:pub.10.1186/1758-5996-6-12
29 schema:datePublished 2018-01-29
30 schema:datePublishedReg 2018-01-29
31 schema:description Hypertension is an important public health problem in the world. Since the intermediate position of the gene expression between genotype and phenotype makes it suitable to link genotype to phenotype, we carried out a two-stage whole-genome gene expression association study to find differentially expressed genes and pathways for hypertension. In the first stage, 126 cases and 149 controls were used to find out the differentially expressed genes. In the second stage, an independent set of samples (127 cases and 150 controls) was used to validate the results. Additionally, we conducted a gene set enrichment analysis (GSEA) to search for differentially affected pathways. A total of nine genes were implicated in the first stage (Bonferroni-corrected p-value < 0.05). Among these genes, ZRANB1, FAM110A, PREP, ANKRD9 and LAMB2 were also differentially expressed in an existing database of hypertensive mouse model (GSE19817). A total of 16 pathways were identified by the GSEA. ZRANB1 and six pathways identified are related to TNF-α. Three pathways are related to interleukin, one to metabolic syndrome, and one to Hedgehog signaling. Identification of these genes and pathways suggest the importance of 1. inflammation, 2. visceral fat metabolism, and 3. adipocytes and osteocytes homeostasis in hypertension mechanisms and complications.
32 schema:genre article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N29e13ea20dfa4fe6b649a6f5a49a0fec
36 N94316b1f4712452283e51810eb0f814e
37 sg:journal.1045337
38 schema:keywords ANKRD9
39 Chinese population
40 FAM110A
41 GSEA
42 Genome Gene Expression Association Study
43 Han Chinese population
44 LAMB2
45 PrEP
46 TNF
47 Taiwan
48 Two-Stage Whole
49 ZRANB1
50 adipocytes
51 analysis
52 association studies
53 cases
54 complications
55 control
56 database
57 enrichment analysis
58 expression
59 expression association study
60 fat metabolism
61 first stage
62 gene expression
63 gene expression association study
64 genes
65 genotypes
66 health problems
67 hedgehog
68 homeostasis
69 hypertension
70 hypertension mechanisms
71 hypertensive mouse model
72 identification
73 importance
74 important public health problem
75 independent set
76 inflammation
77 interleukin
78 intermediate position
79 mechanism
80 metabolic syndrome
81 metabolism
82 model
83 mouse model
84 pathway
85 phenotype
86 population
87 position
88 problem
89 public health problem
90 results
91 samples
92 second stage
93 set
94 stage
95 study
96 syndrome
97 total
98 two-stage whole-genome gene expression association study
99 visceral fat metabolism
100 whole
101 whole-genome gene expression association study
102 world
103 young-onset hypertension
104 schema:name A Two-Stage Whole-Genome Gene Expression Association Study of Young-Onset Hypertension in Han Chinese Population of Taiwan
105 schema:pagination 1800
106 schema:productId N518b8ed82fbd4365bf214e1da3178229
107 N62d69755e6f2483d9e1ff89daf00c88b
108 Nab76b307d4884222bab406b12471dfbd
109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100592830
110 https://doi.org/10.1038/s41598-018-19520-w
111 schema:sdDatePublished 2021-12-01T19:44
112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
113 schema:sdPublisher N0d3a3b8d02754b7192d01a80f637c7b5
114 schema:url https://doi.org/10.1038/s41598-018-19520-w
115 sgo:license sg:explorer/license/
116 sgo:sdDataset articles
117 rdf:type schema:ScholarlyArticle
118 N0681d8b21aac404c87a9d101a49eadb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Hypertension
120 rdf:type schema:DefinedTerm
121 N085aa144bae940169af5b522ce1fabd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Animals
123 rdf:type schema:DefinedTerm
124 N09c46ba776f64e799139a6f776e47899 rdf:first sg:person.01142172345.55
125 rdf:rest Nfa9aeec4af09494eb7c54b7c5bd45df9
126 N0d3a3b8d02754b7192d01a80f637c7b5 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 N114635ed3a2b43ffa1e0e4fdbf323830 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Genome
130 rdf:type schema:DefinedTerm
131 N143d8b2e0e6640ccbdb314e70361ebec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Gene Expression
133 rdf:type schema:DefinedTerm
134 N1d7a2dfffdb04a75b926660ec0d744fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Ubiquitin-Specific Proteases
136 rdf:type schema:DefinedTerm
137 N28bbc8c8b68a4aa0830d7948a2c4c5f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Humans
139 rdf:type schema:DefinedTerm
140 N29e13ea20dfa4fe6b649a6f5a49a0fec schema:volumeNumber 8
141 rdf:type schema:PublicationVolume
142 N2b1ed3bfcc0c4aa188e2683c857ee685 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Genome-Wide Association Study
144 rdf:type schema:DefinedTerm
145 N33d9540cbb4246c88006015d6e3472c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Female
147 rdf:type schema:DefinedTerm
148 N518b8ed82fbd4365bf214e1da3178229 schema:name pubmed_id
149 schema:value 29379041
150 rdf:type schema:PropertyValue
151 N5bd84ae34d7546f3881ea0bea699f7ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Mice
153 rdf:type schema:DefinedTerm
154 N62d69755e6f2483d9e1ff89daf00c88b schema:name doi
155 schema:value 10.1038/s41598-018-19520-w
156 rdf:type schema:PropertyValue
157 N63f1565752b0418691bb81e2fdd82a99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Gene Expression Profiling
159 rdf:type schema:DefinedTerm
160 N6bb1674144d945cdba2b12b3f3aee979 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Case-Control Studies
162 rdf:type schema:DefinedTerm
163 N764b2831f5bb45eea54455b1b3305bd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Asian Continental Ancestry Group
165 rdf:type schema:DefinedTerm
166 N78f0054d98e44adf989ad0071ec9d1cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Polymorphism, Single Nucleotide
168 rdf:type schema:DefinedTerm
169 N936eae34d1e5471c996d13aa0369c303 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Genetic Predisposition to Disease
171 rdf:type schema:DefinedTerm
172 N94316b1f4712452283e51810eb0f814e schema:issueNumber 1
173 rdf:type schema:PublicationIssue
174 N9a6228fa0620480f905ae4b2c13d6a49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Male
176 rdf:type schema:DefinedTerm
177 Na7c04b334cc6449b881fe6069cae6474 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Genotype
179 rdf:type schema:DefinedTerm
180 Nab76b307d4884222bab406b12471dfbd schema:name dimensions_id
181 schema:value pub.1100592830
182 rdf:type schema:PropertyValue
183 Nc97ecb2aa2614f82baa2fe21a704ee08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Taiwan
185 rdf:type schema:DefinedTerm
186 Nddc8c6d9018e44b093fc8d2bf73475f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Adult
188 rdf:type schema:DefinedTerm
189 Nfa9aeec4af09494eb7c54b7c5bd45df9 rdf:first sg:person.0605363446.43
190 rdf:rest Nfc40c82b2e674c0db63a02c2a06adb99
191 Nfc40c82b2e674c0db63a02c2a06adb99 rdf:first sg:person.01032700233.67
192 rdf:rest rdf:nil
193 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
194 schema:name Biological Sciences
195 rdf:type schema:DefinedTerm
196 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
197 schema:name Genetics
198 rdf:type schema:DefinedTerm
199 sg:journal.1045337 schema:issn 2045-2322
200 schema:name Scientific Reports
201 schema:publisher Springer Nature
202 rdf:type schema:Periodical
203 sg:person.01032700233.67 schema:affiliation grid-institutes:grid.482251.8
204 schema:familyName Pan
205 schema:givenName Wen-Harn
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032700233.67
207 rdf:type schema:Person
208 sg:person.01142172345.55 schema:affiliation grid-institutes:grid.482251.8
209 schema:familyName Chiang
210 schema:givenName Kuang-Mao
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142172345.55
212 rdf:type schema:Person
213 sg:person.0605363446.43 schema:affiliation grid-institutes:grid.422824.a
214 schema:familyName Yang
215 schema:givenName Hsin-Chou
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605363446.43
217 rdf:type schema:Person
218 sg:pub.10.1007/s10528-007-9130-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017420937
219 https://doi.org/10.1007/s10528-007-9130-x
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/s12265-010-9183-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047167230
222 https://doi.org/10.1007/s12265-010-9183-9
223 rdf:type schema:CreativeWork
224 sg:pub.10.1023/b:nere.0000023608.29741.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038242490
225 https://doi.org/10.1023/b:nere.0000023608.29741.45
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/ng1094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013710656
228 https://doi.org/10.1038/ng1094
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/nrg1964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045268426
231 https://doi.org/10.1038/nrg1964
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nrg2383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012892309
234 https://doi.org/10.1038/nrg2383
235 rdf:type schema:CreativeWork
236 sg:pub.10.1186/1758-5996-6-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038942181
237 https://doi.org/10.1186/1758-5996-6-12
238 rdf:type schema:CreativeWork
239 grid-institutes:grid.422824.a schema:alternateName Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
240 schema:name Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
241 rdf:type schema:Organization
242 grid-institutes:grid.482251.8 schema:alternateName Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
243 schema:name Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
244 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...