Widespread persistent changes to temperature extremes occurred earlier than predicted View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-01-17

AUTHORS

Chao Li, Yuanyuan Fang, Ken Caldeira, Xuebin Zhang, Noah S. Diffenbaugh, Anna M. Michalak

ABSTRACT

A critical question for climate mitigation and adaptation is to understand when and where the signal of changes to climate extremes have persistently emerged or will emerge from the background noise of climate variability. Here we show observational evidence that such persistent changes to temperature extremes have already occurred over large parts of the Earth. We further show that climate models forced with natural and anthropogenic historical forcings underestimate these changes. In particular, persistent changes have emerged in observations earlier and over a larger spatial extent than predicted by models. The delayed emergence in the models is linked to a combination of simulated change (‘signal’) that is weaker than observed, and simulated variability (‘noise’) that is greater than observed. Over regions where persistent changes had not occurred by the year 2000, we find that most of the observed signal-to-noise ratios lie within the 16–84% range of those simulated. Examination of simulations with and without anthropogenic forcings provides evidence that the observed changes are more likely to be anthropogenic than nature in origin. Our findings suggest that further changes to temperature extremes over parts of the Earth are likely to occur earlier than projected by the current climate models. More... »

PAGES

1007

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-19288-z

DOI

http://dx.doi.org/10.1038/s41598-018-19288-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100320604

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29343828


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada", 
          "id": "http://www.grid.ac/institutes/grid.143640.4", 
          "name": [
            "Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA", 
            "Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Chao", 
        "id": "sg:person.012345363050.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012345363050.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.418000.d", 
          "name": [
            "Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Yuanyuan", 
        "id": "sg:person.011001441177.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011001441177.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.418000.d", 
          "name": [
            "Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caldeira", 
        "givenName": "Ken", 
        "id": "sg:person.01357657333.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357657333.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.410334.1", 
          "name": [
            "Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xuebin", 
        "id": "sg:person.0663433371.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663433371.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Woods Institute for the Environment, Stanford University, Stanford, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Earth System Science, Stanford University, Stanford, California, USA", 
            "Woods Institute for the Environment, Stanford University, Stanford, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Diffenbaugh", 
        "givenName": "Noah S.", 
        "id": "sg:person.07755742371.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07755742371.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.418000.d", 
          "name": [
            "Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michalak", 
        "givenName": "Anna M.", 
        "id": "sg:person.01172104614.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172104614.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep06929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018909608", 
          "https://doi.org/10.1038/srep06929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000358204", 
          "https://doi.org/10.1038/nclimate2022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-011-0112-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006938098", 
          "https://doi.org/10.1007/s10584-011-0112-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1829-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022979088", 
          "https://doi.org/10.1007/s00382-013-1829-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025273865", 
          "https://doi.org/10.1038/nature13523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041353031", 
          "https://doi.org/10.1007/b98858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004463467", 
          "https://doi.org/10.1038/nclimate2397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0566-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032933099", 
          "https://doi.org/10.1007/s00382-009-0566-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01-17", 
    "datePublishedReg": "2018-01-17", 
    "description": "A critical question for climate mitigation and adaptation is to understand when and where the signal of changes to climate extremes have persistently emerged or will emerge from the background noise of climate variability. Here we show observational evidence that such persistent changes to temperature extremes have already occurred over large parts of the Earth. We further show that climate models forced with natural and anthropogenic historical forcings underestimate these changes. In particular, persistent changes have emerged in observations earlier and over a larger spatial extent than predicted by models. The delayed emergence in the models is linked to a combination of simulated change (\u2018signal\u2019) that is weaker than observed, and simulated variability (\u2018noise\u2019) that is greater than observed. Over regions where persistent changes had not occurred by the year 2000, we find that most of the observed signal-to-noise ratios lie within the 16\u201384% range of those simulated. Examination of simulations with and without anthropogenic forcings provides evidence that the observed changes are more likely to be anthropogenic than nature in origin. Our findings suggest that further changes to temperature extremes over parts of the Earth are likely to occur earlier than projected by the current climate models.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-018-19288-z", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3146875", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "temperature extremes", 
      "climate models", 
      "current climate models", 
      "signals of change", 
      "large spatial extent", 
      "historical forcing", 
      "anthropogenic forcing", 
      "climate variability", 
      "examination of simulations", 
      "spatial extent", 
      "observational evidence", 
      "such persistent changes", 
      "forcing", 
      "extremes", 
      "Earth", 
      "observed changes", 
      "climate mitigation", 
      "variability", 
      "large part", 
      "observed signal", 
      "persistent changes", 
      "year 2000", 
      "changes", 
      "part", 
      "further changes", 
      "origin", 
      "model", 
      "mitigation", 
      "region", 
      "evidence", 
      "extent", 
      "simulations", 
      "critical questions", 
      "ratio", 
      "signals", 
      "range", 
      "background noise", 
      "nature", 
      "noise ratio", 
      "combination", 
      "adaptation", 
      "noise", 
      "questions", 
      "emergence", 
      "examination", 
      "findings", 
      "observations"
    ], 
    "name": "Widespread persistent changes to temperature extremes occurred earlier than predicted", 
    "pagination": "1007", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100320604"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-19288-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29343828"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-19288-z", 
      "https://app.dimensions.ai/details/publication/pub.1100320604"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_784.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-018-19288-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-19288-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-19288-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-19288-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-19288-z'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      80 URIs      64 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-19288-z schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nd124b69d5b6e4eb8be096a863a45f841
4 schema:citation sg:pub.10.1007/b98858
5 sg:pub.10.1007/s00382-009-0566-z
6 sg:pub.10.1007/s00382-013-1829-2
7 sg:pub.10.1007/s10584-011-0112-y
8 sg:pub.10.1038/nature13523
9 sg:pub.10.1038/nclimate2022
10 sg:pub.10.1038/nclimate2397
11 sg:pub.10.1038/srep06929
12 schema:datePublished 2018-01-17
13 schema:datePublishedReg 2018-01-17
14 schema:description A critical question for climate mitigation and adaptation is to understand when and where the signal of changes to climate extremes have persistently emerged or will emerge from the background noise of climate variability. Here we show observational evidence that such persistent changes to temperature extremes have already occurred over large parts of the Earth. We further show that climate models forced with natural and anthropogenic historical forcings underestimate these changes. In particular, persistent changes have emerged in observations earlier and over a larger spatial extent than predicted by models. The delayed emergence in the models is linked to a combination of simulated change (‘signal’) that is weaker than observed, and simulated variability (‘noise’) that is greater than observed. Over regions where persistent changes had not occurred by the year 2000, we find that most of the observed signal-to-noise ratios lie within the 16–84% range of those simulated. Examination of simulations with and without anthropogenic forcings provides evidence that the observed changes are more likely to be anthropogenic than nature in origin. Our findings suggest that further changes to temperature extremes over parts of the Earth are likely to occur earlier than projected by the current climate models.
15 schema:genre article
16 schema:isAccessibleForFree true
17 schema:isPartOf N8ba3b1b95fc94ebf9b81e5c776a19501
18 Ne38ad141fe4b46a885392c932d6dfc24
19 sg:journal.1045337
20 schema:keywords Earth
21 adaptation
22 anthropogenic forcing
23 background noise
24 changes
25 climate mitigation
26 climate models
27 climate variability
28 combination
29 critical questions
30 current climate models
31 emergence
32 evidence
33 examination
34 examination of simulations
35 extent
36 extremes
37 findings
38 forcing
39 further changes
40 historical forcing
41 large part
42 large spatial extent
43 mitigation
44 model
45 nature
46 noise
47 noise ratio
48 observational evidence
49 observations
50 observed changes
51 observed signal
52 origin
53 part
54 persistent changes
55 questions
56 range
57 ratio
58 region
59 signals
60 signals of change
61 simulations
62 spatial extent
63 such persistent changes
64 temperature extremes
65 variability
66 year 2000
67 schema:name Widespread persistent changes to temperature extremes occurred earlier than predicted
68 schema:pagination 1007
69 schema:productId N50c36f3aa55c4988bb26286791c08b76
70 Nbfec58442e67474a9480646449d9ff07
71 Nd442d332573c406a94966ace04918817
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100320604
73 https://doi.org/10.1038/s41598-018-19288-z
74 schema:sdDatePublished 2022-12-01T06:38
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Nc95a87eff20f4ec08f21b97fdc9d7eb3
77 schema:url https://doi.org/10.1038/s41598-018-19288-z
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N2c1d31d38e624d599ed2f7d5a52f7292 rdf:first sg:person.011001441177.27
82 rdf:rest N6ed1843d0e5a41bdb8384e2658df20a4
83 N50c36f3aa55c4988bb26286791c08b76 schema:name dimensions_id
84 schema:value pub.1100320604
85 rdf:type schema:PropertyValue
86 N6ed1843d0e5a41bdb8384e2658df20a4 rdf:first sg:person.01357657333.44
87 rdf:rest Ncb413d3d358f477991a00e10fa16fd26
88 N8946f93ef3d341eba09f186ec8b79f05 rdf:first sg:person.01172104614.98
89 rdf:rest rdf:nil
90 N8ba3b1b95fc94ebf9b81e5c776a19501 schema:issueNumber 1
91 rdf:type schema:PublicationIssue
92 Nbfec58442e67474a9480646449d9ff07 schema:name doi
93 schema:value 10.1038/s41598-018-19288-z
94 rdf:type schema:PropertyValue
95 Nc95a87eff20f4ec08f21b97fdc9d7eb3 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Ncb413d3d358f477991a00e10fa16fd26 rdf:first sg:person.0663433371.88
98 rdf:rest Nfdece7552d634666b582b5acf5d1a428
99 Nd124b69d5b6e4eb8be096a863a45f841 rdf:first sg:person.012345363050.23
100 rdf:rest N2c1d31d38e624d599ed2f7d5a52f7292
101 Nd442d332573c406a94966ace04918817 schema:name pubmed_id
102 schema:value 29343828
103 rdf:type schema:PropertyValue
104 Ne38ad141fe4b46a885392c932d6dfc24 schema:volumeNumber 8
105 rdf:type schema:PublicationVolume
106 Nfdece7552d634666b582b5acf5d1a428 rdf:first sg:person.07755742371.03
107 rdf:rest N8946f93ef3d341eba09f186ec8b79f05
108 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
109 schema:name Earth Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
112 schema:name Atmospheric Sciences
113 rdf:type schema:DefinedTerm
114 sg:grant.3146875 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-19288-z
115 rdf:type schema:MonetaryGrant
116 sg:journal.1045337 schema:issn 2045-2322
117 schema:name Scientific Reports
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:person.011001441177.27 schema:affiliation grid-institutes:grid.418000.d
121 schema:familyName Fang
122 schema:givenName Yuanyuan
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011001441177.27
124 rdf:type schema:Person
125 sg:person.01172104614.98 schema:affiliation grid-institutes:grid.418000.d
126 schema:familyName Michalak
127 schema:givenName Anna M.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172104614.98
129 rdf:type schema:Person
130 sg:person.012345363050.23 schema:affiliation grid-institutes:grid.143640.4
131 schema:familyName Li
132 schema:givenName Chao
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012345363050.23
134 rdf:type schema:Person
135 sg:person.01357657333.44 schema:affiliation grid-institutes:grid.418000.d
136 schema:familyName Caldeira
137 schema:givenName Ken
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357657333.44
139 rdf:type schema:Person
140 sg:person.0663433371.88 schema:affiliation grid-institutes:grid.410334.1
141 schema:familyName Zhang
142 schema:givenName Xuebin
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663433371.88
144 rdf:type schema:Person
145 sg:person.07755742371.03 schema:affiliation grid-institutes:grid.168010.e
146 schema:familyName Diffenbaugh
147 schema:givenName Noah S.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07755742371.03
149 rdf:type schema:Person
150 sg:pub.10.1007/b98858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041353031
151 https://doi.org/10.1007/b98858
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00382-009-0566-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032933099
154 https://doi.org/10.1007/s00382-009-0566-z
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00382-013-1829-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022979088
157 https://doi.org/10.1007/s00382-013-1829-2
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s10584-011-0112-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006938098
160 https://doi.org/10.1007/s10584-011-0112-y
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature13523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025273865
163 https://doi.org/10.1038/nature13523
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nclimate2022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000358204
166 https://doi.org/10.1038/nclimate2022
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nclimate2397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004463467
169 https://doi.org/10.1038/nclimate2397
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/srep06929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018909608
172 https://doi.org/10.1038/srep06929
173 rdf:type schema:CreativeWork
174 grid-institutes:grid.143640.4 schema:alternateName Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada
175 schema:name Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
176 Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada
177 rdf:type schema:Organization
178 grid-institutes:grid.168010.e schema:alternateName Woods Institute for the Environment, Stanford University, Stanford, California, USA
179 schema:name Department of Earth System Science, Stanford University, Stanford, California, USA
180 Woods Institute for the Environment, Stanford University, Stanford, California, USA
181 rdf:type schema:Organization
182 grid-institutes:grid.410334.1 schema:alternateName Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
183 schema:name Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
184 rdf:type schema:Organization
185 grid-institutes:grid.418000.d schema:alternateName Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
186 schema:name Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...