Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-01-11

AUTHORS

Marcus Nguyen, Thomas Brettin, S. Wesley Long, James M. Musser, Randall J. Olsen, Robert Olson, Maulik Shukla, Rick L. Stevens, Fangfang Xia, Hyunseung Yoo, James J. Davis

ABSTRACT

Antimicrobial resistant infections are a serious public health threat worldwide. Whole genome sequencing approaches to rapidly identify pathogens and predict antibiotic resistance phenotypes are becoming more feasible and may offer a way to reduce clinical test turnaround times compared to conventional culture-based methods, and in turn, improve patient outcomes. In this study, we use whole genome sequence data from 1668 clinical isolates of Klebsiella pneumoniae to develop a XGBoost-based machine learning model that accurately predicts minimum inhibitory concentrations (MICs) for 20 antibiotics. The overall accuracy of the model, within ±1 two-fold dilution factor, is 92%. Individual accuracies are ≥90% for 15/20 antibiotics. We show that the MICs predicted by the model correlate with known antimicrobial resistance genes. Importantly, the genome-wide approach described in this study offers a way to predict MICs for isolates without knowledge of the underlying gene content. This study shows that machine learning can be used to build a complete in silico MIC prediction panel for K. pneumoniae and provides a framework for building MIC prediction models for other pathogenic bacteria. More... »

PAGES

421

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-18972-w

DOI

http://dx.doi.org/10.1038/s41598-017-18972-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100212536

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29323230


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anti-Bacterial Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Resistance, Multiple, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Klebsiella Infections", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Klebsiella pneumoniae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbial Sensitivity Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Whole Genome Sequencing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory, Computing Environment and Life Sciences, Argonne, IL 60439 USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Northern Illinois University, Computation Science, DeKalb, IL 60115 USA", 
            "University of Chicago, Computation Institute, Chicago, IL 60637 USA", 
            "Argonne National Laboratory, Computing Environment and Life Sciences, Argonne, IL 60439 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nguyen", 
        "givenName": "Marcus", 
        "id": "sg:person.015636603630.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015636603630.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory, Computing Environment and Life Sciences, Argonne, IL 60439 USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "University of Chicago, Computation Institute, Chicago, IL 60637 USA", 
            "Argonne National Laboratory, Computing Environment and Life Sciences, Argonne, IL 60439 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brettin", 
        "givenName": "Thomas", 
        "id": "sg:person.01265534462.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265534462.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065 USA", 
          "id": "http://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas 77030 USA", 
            "Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Long", 
        "givenName": "S. Wesley", 
        "id": "sg:person.01347207063.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347207063.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065 USA", 
          "id": "http://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas 77030 USA", 
            "Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Musser", 
        "givenName": "James M.", 
        "id": "sg:person.0661603131.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661603131.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065 USA", 
          "id": "http://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas 77030 USA", 
            "Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olsen", 
        "givenName": "Randall J.", 
        "id": "sg:person.0677177537.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677177537.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory, Computing Environment and Life Sciences, Argonne, IL 60439 USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "University of Chicago, Computation Institute, Chicago, IL 60637 USA", 
            "Argonne National Laboratory, Computing Environment and Life Sciences, Argonne, IL 60439 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olson", 
        "givenName": "Robert", 
        "id": "sg:person.01021612334.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021612334.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory, Computing Environment and Life Sciences, Argonne, IL 60439 USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "University of Chicago, Computation Institute, Chicago, IL 60637 USA", 
            "Argonne National Laboratory, Computing Environment and Life Sciences, Argonne, IL 60439 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shukla", 
        "givenName": "Maulik", 
        "id": "sg:person.0710506007.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710506007.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago, Department of Computer Science, Chicago, IL 60439 USA", 
          "id": "http://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "University of Chicago, Computation Institute, Chicago, IL 60637 USA", 
            "Argonne National Laboratory, Computing Environment and Life Sciences, Argonne, IL 60439 USA", 
            "University of Chicago, Department of Computer Science, Chicago, IL 60439 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stevens", 
        "givenName": "Rick L.", 
        "id": "sg:person.0707416220.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707416220.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory, Computing Environment and Life Sciences, Argonne, IL 60439 USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "University of Chicago, Computation Institute, Chicago, IL 60637 USA", 
            "Argonne National Laboratory, Computing Environment and Life Sciences, Argonne, IL 60439 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Fangfang", 
        "id": "sg:person.01023644620.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023644620.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory, Computing Environment and Life Sciences, Argonne, IL 60439 USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "University of Chicago, Computation Institute, Chicago, IL 60637 USA", 
            "Argonne National Laboratory, Computing Environment and Life Sciences, Argonne, IL 60439 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoo", 
        "givenName": "Hyunseung", 
        "id": "sg:person.01357746623.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357746623.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory, Computing Environment and Life Sciences, Argonne, IL 60439 USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "University of Chicago, Computation Institute, Chicago, IL 60637 USA", 
            "Argonne National Laboratory, Computing Environment and Life Sciences, Argonne, IL 60439 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davis", 
        "givenName": "James J.", 
        "id": "sg:person.01070627630.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070627630.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00058655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002929950", 
          "https://doi.org/10.1007/bf00058655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-1103-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031658612", 
          "https://doi.org/10.1186/s13059-016-1103-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-2889-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052400167", 
          "https://doi.org/10.1186/s12864-016-2889-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep27930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039514060", 
          "https://doi.org/10.1038/srep27930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-006-6226-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007730804", 
          "https://doi.org/10.1007/s10994-006-6226-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051298724", 
          "https://doi.org/10.1038/ncomms10063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2014.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052774714", 
          "https://doi.org/10.1038/ismej.2014.106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13073-017-0397-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074196399", 
          "https://doi.org/10.1186/s13073-017-0397-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10096-013-1833-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034683407", 
          "https://doi.org/10.1007/s10096-013-1833-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01-11", 
    "datePublishedReg": "2018-01-11", 
    "description": "Antimicrobial resistant infections are a serious public health threat worldwide. Whole genome sequencing approaches to rapidly identify pathogens and predict antibiotic resistance phenotypes are becoming more feasible and may offer a way to reduce clinical test turnaround times compared to conventional culture-based methods, and in turn, improve patient outcomes. In this study, we use whole genome sequence data from 1668 clinical isolates of Klebsiella pneumoniae to develop a XGBoost-based machine learning model that accurately predicts minimum inhibitory concentrations (MICs) for 20 antibiotics. The overall accuracy of the model, within \u00b11 two-fold dilution factor, is 92%. Individual accuracies are \u226590% for 15/20 antibiotics. We show that the MICs predicted by the model correlate with known antimicrobial resistance genes. Importantly, the genome-wide approach described in this study offers a way to predict MICs for isolates without knowledge of the underlying gene content. This study shows that machine learning can be used to build a complete in silico MIC prediction panel for K. pneumoniae and provides a framework for building MIC prediction models for other pathogenic bacteria.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-017-18972-w", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3857096", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "minimum inhibitory concentration", 
      "serious public health threat", 
      "public health threat", 
      "antimicrobial-resistant infections", 
      "antibiotic resistance phenotypes", 
      "patient outcomes", 
      "test turnaround time", 
      "resistant infections", 
      "clinical isolates", 
      "health threat", 
      "Klebsiella pneumoniae", 
      "inhibitory concentration", 
      "antimicrobial resistance genes", 
      "whole genome sequencing approach", 
      "resistance phenotype", 
      "pneumoniae", 
      "prediction panel", 
      "antibiotics", 
      "pathogenic bacteria", 
      "genome sequencing approach", 
      "turnaround time", 
      "isolates", 
      "culture-based methods", 
      "infection", 
      "study", 
      "genome-wide approaches", 
      "panel test", 
      "conventional culture-based methods", 
      "Klebsiella", 
      "outcomes", 
      "correlates", 
      "resistance genes", 
      "phenotype", 
      "pathogens", 
      "sequencing approach", 
      "overall accuracy", 
      "factors", 
      "genes", 
      "test", 
      "individual accuracy", 
      "panel", 
      "concentration", 
      "bacteria", 
      "model correlate", 
      "prediction model", 
      "data", 
      "knowledge", 
      "model", 
      "time", 
      "whole-genome sequence data", 
      "Complete", 
      "dilution factor", 
      "approach", 
      "method", 
      "turn", 
      "content", 
      "accuracy", 
      "genome sequence data", 
      "threat", 
      "way", 
      "gene content", 
      "learning", 
      "sequence data", 
      "machine learning", 
      "machine", 
      "framework", 
      "clinical test turnaround times", 
      "XGBoost-based machine", 
      "two-fold dilution factor", 
      "silico MIC prediction panel", 
      "MIC prediction panel", 
      "MIC prediction models", 
      "silico minimum inhibitory concentration panel test", 
      "minimum inhibitory concentration panel test", 
      "inhibitory concentration panel test", 
      "concentration panel test"
    ], 
    "name": "Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae", 
    "pagination": "421", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100212536"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-18972-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29323230"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-18972-w", 
      "https://app.dimensions.ai/details/publication/pub.1100212536"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_763.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-017-18972-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-18972-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-18972-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-18972-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-18972-w'


 

This table displays all metadata directly associated to this object as RDF triples.

304 TRIPLES      22 PREDICATES      123 URIs      105 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-18972-w schema:about N188b5b37ba264e309f6d075b7dcb6f36
2 N30e42d1049804d88a1db912f55a2305e
3 N3b204d6d276948d2bde10eb780653a36
4 N439500fae2d64da886fd3e643ca31c0b
5 N460d07bde2014666b317eab05fa545c0
6 N4851dc5f235b418cb8a0a0cb06145297
7 N5396a7c5dc654c329e51ca44e37a0398
8 N750174afc35f49bba687db59d0c02eab
9 N9d12afc3c70c4f2f9cfd69e9184fbe6d
10 Nbd424fc265ab4ceaa0792d246ea7dc76
11 Ne17c0d288f44446c8bfbb766f36d2eeb
12 anzsrc-for:11
13 anzsrc-for:1108
14 schema:author N8c138c0ae07944b2bdeb5874cb463bd4
15 schema:citation sg:pub.10.1007/978-1-4757-2440-0
16 sg:pub.10.1007/bf00058655
17 sg:pub.10.1007/s10096-013-1833-9
18 sg:pub.10.1007/s10994-006-6226-1
19 sg:pub.10.1038/ismej.2014.106
20 sg:pub.10.1038/ncomms10063
21 sg:pub.10.1038/srep27930
22 sg:pub.10.1186/s12864-016-2889-6
23 sg:pub.10.1186/s13059-016-1103-0
24 sg:pub.10.1186/s13073-017-0397-1
25 schema:datePublished 2018-01-11
26 schema:datePublishedReg 2018-01-11
27 schema:description Antimicrobial resistant infections are a serious public health threat worldwide. Whole genome sequencing approaches to rapidly identify pathogens and predict antibiotic resistance phenotypes are becoming more feasible and may offer a way to reduce clinical test turnaround times compared to conventional culture-based methods, and in turn, improve patient outcomes. In this study, we use whole genome sequence data from 1668 clinical isolates of Klebsiella pneumoniae to develop a XGBoost-based machine learning model that accurately predicts minimum inhibitory concentrations (MICs) for 20 antibiotics. The overall accuracy of the model, within ±1 two-fold dilution factor, is 92%. Individual accuracies are ≥90% for 15/20 antibiotics. We show that the MICs predicted by the model correlate with known antimicrobial resistance genes. Importantly, the genome-wide approach described in this study offers a way to predict MICs for isolates without knowledge of the underlying gene content. This study shows that machine learning can be used to build a complete in silico MIC prediction panel for K. pneumoniae and provides a framework for building MIC prediction models for other pathogenic bacteria.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N1c9383babc354eeaa045c3de832e17ee
32 N4a9bfeb20dfb44139008c82aed477101
33 sg:journal.1045337
34 schema:keywords Complete
35 Klebsiella
36 Klebsiella pneumoniae
37 MIC prediction models
38 MIC prediction panel
39 XGBoost-based machine
40 accuracy
41 antibiotic resistance phenotypes
42 antibiotics
43 antimicrobial resistance genes
44 antimicrobial-resistant infections
45 approach
46 bacteria
47 clinical isolates
48 clinical test turnaround times
49 concentration
50 concentration panel test
51 content
52 conventional culture-based methods
53 correlates
54 culture-based methods
55 data
56 dilution factor
57 factors
58 framework
59 gene content
60 genes
61 genome sequence data
62 genome sequencing approach
63 genome-wide approaches
64 health threat
65 individual accuracy
66 infection
67 inhibitory concentration
68 inhibitory concentration panel test
69 isolates
70 knowledge
71 learning
72 machine
73 machine learning
74 method
75 minimum inhibitory concentration
76 minimum inhibitory concentration panel test
77 model
78 model correlate
79 outcomes
80 overall accuracy
81 panel
82 panel test
83 pathogenic bacteria
84 pathogens
85 patient outcomes
86 phenotype
87 pneumoniae
88 prediction model
89 prediction panel
90 public health threat
91 resistance genes
92 resistance phenotype
93 resistant infections
94 sequence data
95 sequencing approach
96 serious public health threat
97 silico MIC prediction panel
98 silico minimum inhibitory concentration panel test
99 study
100 test
101 test turnaround time
102 threat
103 time
104 turn
105 turnaround time
106 two-fold dilution factor
107 way
108 whole genome sequencing approach
109 whole-genome sequence data
110 schema:name Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae
111 schema:pagination 421
112 schema:productId N7458503c004d4efb9b14c819fee5a721
113 Nf34543e3419f49cfb8c5d9c8e780ec7e
114 Nfd0de962a38c491e8db73214bf827ca3
115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100212536
116 https://doi.org/10.1038/s41598-017-18972-w
117 schema:sdDatePublished 2021-12-01T19:40
118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
119 schema:sdPublisher Ne6efa9d68a39426bb56fea1f744359f8
120 schema:url https://doi.org/10.1038/s41598-017-18972-w
121 sgo:license sg:explorer/license/
122 sgo:sdDataset articles
123 rdf:type schema:ScholarlyArticle
124 N0016f54916084c2da508636f3ad18f82 rdf:first sg:person.0710506007.22
125 rdf:rest N942450442c204ce3b54d08406c4c7dc6
126 N184068d5c35841eca5f82bb9eb84ba7b rdf:first sg:person.01265534462.01
127 rdf:rest Ndba167e0e2d44988858c5ce57eca48e2
128 N188b5b37ba264e309f6d075b7dcb6f36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Computer Simulation
130 rdf:type schema:DefinedTerm
131 N1a0fe6a1fac1426fb7a8e2b6a12e77ef rdf:first sg:person.0677177537.46
132 rdf:rest N7a08f7fde4ba4d50a7f569078743617c
133 N1c9383babc354eeaa045c3de832e17ee schema:volumeNumber 8
134 rdf:type schema:PublicationVolume
135 N30e42d1049804d88a1db912f55a2305e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Microbial Sensitivity Tests
137 rdf:type schema:DefinedTerm
138 N3b204d6d276948d2bde10eb780653a36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Anti-Bacterial Agents
140 rdf:type schema:DefinedTerm
141 N439500fae2d64da886fd3e643ca31c0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Whole Genome Sequencing
143 rdf:type schema:DefinedTerm
144 N460d07bde2014666b317eab05fa545c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Machine Learning
146 rdf:type schema:DefinedTerm
147 N4851dc5f235b418cb8a0a0cb06145297 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Drug Resistance, Multiple, Bacterial
149 rdf:type schema:DefinedTerm
150 N4a9bfeb20dfb44139008c82aed477101 schema:issueNumber 1
151 rdf:type schema:PublicationIssue
152 N4c288d65723149d0a665bcf1eb80549d rdf:first sg:person.01023644620.00
153 rdf:rest Ne5ec2cbe338c4933a5f8dc3ba2654f2d
154 N5396a7c5dc654c329e51ca44e37a0398 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Klebsiella pneumoniae
156 rdf:type schema:DefinedTerm
157 N6de839c3e03b4768b700c956bdec9673 rdf:first sg:person.01070627630.39
158 rdf:rest rdf:nil
159 N7458503c004d4efb9b14c819fee5a721 schema:name dimensions_id
160 schema:value pub.1100212536
161 rdf:type schema:PropertyValue
162 N750174afc35f49bba687db59d0c02eab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Humans
164 rdf:type schema:DefinedTerm
165 N7a08f7fde4ba4d50a7f569078743617c rdf:first sg:person.01021612334.04
166 rdf:rest N0016f54916084c2da508636f3ad18f82
167 N8c138c0ae07944b2bdeb5874cb463bd4 rdf:first sg:person.015636603630.55
168 rdf:rest N184068d5c35841eca5f82bb9eb84ba7b
169 N942450442c204ce3b54d08406c4c7dc6 rdf:first sg:person.0707416220.12
170 rdf:rest N4c288d65723149d0a665bcf1eb80549d
171 N9d12afc3c70c4f2f9cfd69e9184fbe6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Models, Theoretical
173 rdf:type schema:DefinedTerm
174 Nb68aa7d775c54ceaa8fe6db7649ceac1 rdf:first sg:person.0661603131.54
175 rdf:rest N1a0fe6a1fac1426fb7a8e2b6a12e77ef
176 Nbd424fc265ab4ceaa0792d246ea7dc76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name DNA, Bacterial
178 rdf:type schema:DefinedTerm
179 Ndba167e0e2d44988858c5ce57eca48e2 rdf:first sg:person.01347207063.58
180 rdf:rest Nb68aa7d775c54ceaa8fe6db7649ceac1
181 Ne17c0d288f44446c8bfbb766f36d2eeb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Klebsiella Infections
183 rdf:type schema:DefinedTerm
184 Ne5ec2cbe338c4933a5f8dc3ba2654f2d rdf:first sg:person.01357746623.29
185 rdf:rest N6de839c3e03b4768b700c956bdec9673
186 Ne6efa9d68a39426bb56fea1f744359f8 schema:name Springer Nature - SN SciGraph project
187 rdf:type schema:Organization
188 Nf34543e3419f49cfb8c5d9c8e780ec7e schema:name pubmed_id
189 schema:value 29323230
190 rdf:type schema:PropertyValue
191 Nfd0de962a38c491e8db73214bf827ca3 schema:name doi
192 schema:value 10.1038/s41598-017-18972-w
193 rdf:type schema:PropertyValue
194 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
195 schema:name Medical and Health Sciences
196 rdf:type schema:DefinedTerm
197 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
198 schema:name Medical Microbiology
199 rdf:type schema:DefinedTerm
200 sg:grant.3857096 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-18972-w
201 rdf:type schema:MonetaryGrant
202 sg:journal.1045337 schema:issn 2045-2322
203 schema:name Scientific Reports
204 schema:publisher Springer Nature
205 rdf:type schema:Periodical
206 sg:person.01021612334.04 schema:affiliation grid-institutes:None
207 schema:familyName Olson
208 schema:givenName Robert
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021612334.04
210 rdf:type schema:Person
211 sg:person.01023644620.00 schema:affiliation grid-institutes:None
212 schema:familyName Xia
213 schema:givenName Fangfang
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023644620.00
215 rdf:type schema:Person
216 sg:person.01070627630.39 schema:affiliation grid-institutes:None
217 schema:familyName Davis
218 schema:givenName James J.
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070627630.39
220 rdf:type schema:Person
221 sg:person.01265534462.01 schema:affiliation grid-institutes:None
222 schema:familyName Brettin
223 schema:givenName Thomas
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265534462.01
225 rdf:type schema:Person
226 sg:person.01347207063.58 schema:affiliation grid-institutes:grid.5386.8
227 schema:familyName Long
228 schema:givenName S. Wesley
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347207063.58
230 rdf:type schema:Person
231 sg:person.01357746623.29 schema:affiliation grid-institutes:None
232 schema:familyName Yoo
233 schema:givenName Hyunseung
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357746623.29
235 rdf:type schema:Person
236 sg:person.015636603630.55 schema:affiliation grid-institutes:None
237 schema:familyName Nguyen
238 schema:givenName Marcus
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015636603630.55
240 rdf:type schema:Person
241 sg:person.0661603131.54 schema:affiliation grid-institutes:grid.5386.8
242 schema:familyName Musser
243 schema:givenName James M.
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661603131.54
245 rdf:type schema:Person
246 sg:person.0677177537.46 schema:affiliation grid-institutes:grid.5386.8
247 schema:familyName Olsen
248 schema:givenName Randall J.
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677177537.46
250 rdf:type schema:Person
251 sg:person.0707416220.12 schema:affiliation grid-institutes:grid.170205.1
252 schema:familyName Stevens
253 schema:givenName Rick L.
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707416220.12
255 rdf:type schema:Person
256 sg:person.0710506007.22 schema:affiliation grid-institutes:None
257 schema:familyName Shukla
258 schema:givenName Maulik
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710506007.22
260 rdf:type schema:Person
261 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
262 https://doi.org/10.1007/978-1-4757-2440-0
263 rdf:type schema:CreativeWork
264 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
265 https://doi.org/10.1007/bf00058655
266 rdf:type schema:CreativeWork
267 sg:pub.10.1007/s10096-013-1833-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034683407
268 https://doi.org/10.1007/s10096-013-1833-9
269 rdf:type schema:CreativeWork
270 sg:pub.10.1007/s10994-006-6226-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007730804
271 https://doi.org/10.1007/s10994-006-6226-1
272 rdf:type schema:CreativeWork
273 sg:pub.10.1038/ismej.2014.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052774714
274 https://doi.org/10.1038/ismej.2014.106
275 rdf:type schema:CreativeWork
276 sg:pub.10.1038/ncomms10063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051298724
277 https://doi.org/10.1038/ncomms10063
278 rdf:type schema:CreativeWork
279 sg:pub.10.1038/srep27930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039514060
280 https://doi.org/10.1038/srep27930
281 rdf:type schema:CreativeWork
282 sg:pub.10.1186/s12864-016-2889-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052400167
283 https://doi.org/10.1186/s12864-016-2889-6
284 rdf:type schema:CreativeWork
285 sg:pub.10.1186/s13059-016-1103-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031658612
286 https://doi.org/10.1186/s13059-016-1103-0
287 rdf:type schema:CreativeWork
288 sg:pub.10.1186/s13073-017-0397-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074196399
289 https://doi.org/10.1186/s13073-017-0397-1
290 rdf:type schema:CreativeWork
291 grid-institutes:None schema:alternateName Argonne National Laboratory, Computing Environment and Life Sciences, Argonne, IL 60439 USA
292 schema:name Argonne National Laboratory, Computing Environment and Life Sciences, Argonne, IL 60439 USA
293 Northern Illinois University, Computation Science, DeKalb, IL 60115 USA
294 University of Chicago, Computation Institute, Chicago, IL 60637 USA
295 rdf:type schema:Organization
296 grid-institutes:grid.170205.1 schema:alternateName University of Chicago, Department of Computer Science, Chicago, IL 60439 USA
297 schema:name Argonne National Laboratory, Computing Environment and Life Sciences, Argonne, IL 60439 USA
298 University of Chicago, Computation Institute, Chicago, IL 60637 USA
299 University of Chicago, Department of Computer Science, Chicago, IL 60439 USA
300 rdf:type schema:Organization
301 grid-institutes:grid.5386.8 schema:alternateName Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065 USA
302 schema:name Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas 77030 USA
303 Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065 USA
304 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...