The Association of Fit-Fat Index with Incident Diabetes in Japanese Men: A Prospective Cohort Study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-01-12

AUTHORS

Robert A. Sloan, Susumu S. Sawada, Lee I-Min, Yuko Gando, Ryoko Kawakami, Takashi Okamoto, Koji Tsukamoto, Motohiko Miyachi

ABSTRACT

Type 2 diabetes is increasing globally and in Asia. The purpose of this study was to examine the association of a fit-fat index (FFI) with diabetes incidence among Japanese men. In total 5,014 men aged 18–64 years old, who had an annual health check up with no history of major chronic disease at baseline from 2002 to 2009 were observed. CRF was estimated via cycle ergometry. Overall, 7.6% of the men developed diabetes. The mean follow-up period was 5.3 years. Hazard ratios, 95% confidence intervals and P trend for diabetes incidence were obtained using the Cox proportional hazards model while adjusting for confounding variables. High FFI demonstrated lower risk 0.54 (0.36–0.82) compared to low BMI 0.63 (0.44–0.90), low WHtR 0.64 (0.41–1.02), and High CRF 0.72 (0.51–1.03). FFI showed a marginally stronger dose response relationship across quartiles (P (trend) =0.001) compared to BMI (P (trend) =0.002), WHtR (P (trend) =0.055), and CRF (P (trend) =0.005). Overall, both fitness and fatness play independent roles in determining diabetes incidence in Japanese men. FFI may be a more advantageous physical fitness measure because it can account for changes in fitness and/or fatness. More... »

PAGES

569

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-18898-3

DOI

http://dx.doi.org/10.1038/s41598-017-18898-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100249067

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29330373


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiorespiratory Fitness", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Japan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kagoshima University, Graduate Medical and Dental School, Department of Psychosomatic Internal Medicine, Kagoshima, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258333.c", 
          "name": [
            "Kagoshima University, Graduate Medical and Dental School, Department of Psychosomatic Internal Medicine, Kagoshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sloan", 
        "givenName": "Robert A.", 
        "id": "sg:person.01101775356.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101775356.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Biomedical Innovation, Health and Nutrition, Department of Health Promotion and Exercise, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.482562.f", 
          "name": [
            "National Institutes of Biomedical Innovation, Health and Nutrition, Department of Health Promotion and Exercise, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sawada", 
        "givenName": "Susumu S.", 
        "id": "sg:person.01164034246.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164034246.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Harvard Medical School, Brigham and Women\u2019s Hospital, Boston, MA, USA", 
            "Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "I-Min", 
        "givenName": "Lee", 
        "id": "sg:person.0601615312.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601615312.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Biomedical Innovation, Health and Nutrition, Department of Health Promotion and Exercise, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.482562.f", 
          "name": [
            "National Institutes of Biomedical Innovation, Health and Nutrition, Department of Health Promotion and Exercise, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gando", 
        "givenName": "Yuko", 
        "id": "sg:person.01204536710.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204536710.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Waseda University, Faculty of Sport Sciences, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Waseda University, Faculty of Sport Sciences, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawakami", 
        "givenName": "Ryoko", 
        "id": "sg:person.01120567020.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120567020.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Gas Co., Ltd., Health Promotion Center, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.460109.a", 
          "name": [
            "Tokyo Gas Co., Ltd., Health Promotion Center, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okamoto", 
        "givenName": "Takashi", 
        "id": "sg:person.01115730510.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115730510.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Gas Co., Ltd., Health Promotion Center, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.460109.a", 
          "name": [
            "Tokyo Gas Co., Ltd., Health Promotion Center, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsukamoto", 
        "givenName": "Koji", 
        "id": "sg:person.0616562433.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616562433.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Biomedical Innovation, Health and Nutrition, Department of Health Promotion and Exercise, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.482562.f", 
          "name": [
            "National Institutes of Biomedical Innovation, Health and Nutrition, Department of Health Promotion and Exercise, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyachi", 
        "givenName": "Motohiko", 
        "id": "sg:person.01122201430.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122201430.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11135-006-9018-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005771510", 
          "https://doi.org/10.1007/s11135-006-9018-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0802259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026699560", 
          "https://doi.org/10.1038/sj.ijo.0802259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12955-015-0385-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042976290", 
          "https://doi.org/10.1186/s12955-015-0385-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01-12", 
    "datePublishedReg": "2018-01-12", 
    "description": "Type 2 diabetes is increasing globally and in Asia. The purpose of this study was to examine the association of a fit-fat index (FFI) with diabetes incidence among Japanese men. In total 5,014 men aged 18\u201364 years old, who had an annual health check up with no history of major chronic disease at baseline from 2002 to 2009 were observed. CRF was estimated via cycle ergometry. Overall, 7.6% of the men developed diabetes. The mean follow-up period was 5.3 years. Hazard ratios, 95% confidence intervals and P trend for diabetes incidence were obtained using the Cox proportional hazards model while adjusting for confounding variables. High FFI demonstrated lower risk 0.54 (0.36\u20130.82) compared to low BMI 0.63 (0.44\u20130.90), low WHtR 0.64 (0.41\u20131.02), and High CRF 0.72 (0.51\u20131.03). FFI showed a marginally stronger dose response relationship across quartiles (P (trend) =0.001) compared to BMI (P (trend) =0.002), WHtR (P (trend) =0.055), and CRF (P (trend) =0.005). Overall, both fitness and fatness play independent roles in determining diabetes incidence in Japanese men. FFI may be a more advantageous physical fitness measure because it can account for changes in fitness and/or fatness.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-017-18898-3", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "diabetes incidence", 
      "Japanese men", 
      "strong dose-response relationship", 
      "prospective cohort study", 
      "annual health check", 
      "type 2 diabetes", 
      "major chronic diseases", 
      "Cox proportional hazards", 
      "dose-response relationship", 
      "physical fitness measures", 
      "mean follow", 
      "incident diabetes", 
      "hazard ratio", 
      "cohort study", 
      "chronic diseases", 
      "health check", 
      "cycle ergometry", 
      "proportional hazards", 
      "P-trend", 
      "diabetes", 
      "incidence", 
      "confidence intervals", 
      "men", 
      "response relationship", 
      "independent role", 
      "CRF", 
      "association", 
      "fatness", 
      "WHtR", 
      "BMI", 
      "ergometry", 
      "follow", 
      "quartile", 
      "years", 
      "disease", 
      "baseline", 
      "index", 
      "study", 
      "fitness measures", 
      "fitness", 
      "interval", 
      "period", 
      "history", 
      "role", 
      "measures", 
      "changes", 
      "purpose", 
      "hazards", 
      "variables", 
      "relationship", 
      "ratio", 
      "trends", 
      "Asia", 
      "check"
    ], 
    "name": "The Association of Fit-Fat Index with Incident Diabetes in Japanese Men: A Prospective Cohort Study", 
    "pagination": "569", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100249067"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-18898-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29330373"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-18898-3", 
      "https://app.dimensions.ai/details/publication/pub.1100249067"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_788.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-017-18898-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-18898-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-18898-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-18898-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-18898-3'


 

This table displays all metadata directly associated to this object as RDF triples.

244 TRIPLES      21 PREDICATES      96 URIs      84 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-18898-3 schema:about N0e512c90e88d4ca889ca98816fffadab
2 N1f1617533f8e491ebb6e03fe3ea485af
3 N22db2e33a180407094b8a81275e1cfa3
4 N23148f3909d54e46bbd5d56c9952a637
5 N481617bef39048c9917ce80f8c66b1cd
6 Nd2046b2b11c3495ab3c080d72a44466c
7 Nd6d58a41645d49209104256467c0cf8c
8 Nd6f8a752cf7048f89a6f5e1060d5fd70
9 Nddfce2ce88d84fca8f0eb89e0efbf188
10 Nde862991e4a44bf6bc38caab26a4539d
11 Ne431b6113e624d0b942f794f6b163917
12 Ne6483629460d49528c5aed52c324460a
13 Nf763a2f0253241a7b2a3d97fe84a58fa
14 anzsrc-for:11
15 anzsrc-for:1103
16 anzsrc-for:1117
17 schema:author N5a089b606f0640bfa7c2272b1dc11413
18 schema:citation sg:pub.10.1007/s11135-006-9018-6
19 sg:pub.10.1038/sj.ijo.0802259
20 sg:pub.10.1186/s12955-015-0385-3
21 schema:datePublished 2018-01-12
22 schema:datePublishedReg 2018-01-12
23 schema:description Type 2 diabetes is increasing globally and in Asia. The purpose of this study was to examine the association of a fit-fat index (FFI) with diabetes incidence among Japanese men. In total 5,014 men aged 18–64 years old, who had an annual health check up with no history of major chronic disease at baseline from 2002 to 2009 were observed. CRF was estimated via cycle ergometry. Overall, 7.6% of the men developed diabetes. The mean follow-up period was 5.3 years. Hazard ratios, 95% confidence intervals and P trend for diabetes incidence were obtained using the Cox proportional hazards model while adjusting for confounding variables. High FFI demonstrated lower risk 0.54 (0.36–0.82) compared to low BMI 0.63 (0.44–0.90), low WHtR 0.64 (0.41–1.02), and High CRF 0.72 (0.51–1.03). FFI showed a marginally stronger dose response relationship across quartiles (P (trend) =0.001) compared to BMI (P (trend) =0.002), WHtR (P (trend) =0.055), and CRF (P (trend) =0.005). Overall, both fitness and fatness play independent roles in determining diabetes incidence in Japanese men. FFI may be a more advantageous physical fitness measure because it can account for changes in fitness and/or fatness.
24 schema:genre article
25 schema:isAccessibleForFree true
26 schema:isPartOf Na8fd55077077466ab2520a30c6fb78fa
27 Nffbeb2ce52814e13904a01e6c35cc2e0
28 sg:journal.1045337
29 schema:keywords Asia
30 BMI
31 CRF
32 Cox proportional hazards
33 Japanese men
34 P-trend
35 WHtR
36 annual health check
37 association
38 baseline
39 changes
40 check
41 chronic diseases
42 cohort study
43 confidence intervals
44 cycle ergometry
45 diabetes
46 diabetes incidence
47 disease
48 dose-response relationship
49 ergometry
50 fatness
51 fitness
52 fitness measures
53 follow
54 hazard ratio
55 hazards
56 health check
57 history
58 incidence
59 incident diabetes
60 independent role
61 index
62 interval
63 major chronic diseases
64 mean follow
65 measures
66 men
67 period
68 physical fitness measures
69 proportional hazards
70 prospective cohort study
71 purpose
72 quartile
73 ratio
74 relationship
75 response relationship
76 role
77 strong dose-response relationship
78 study
79 trends
80 type 2 diabetes
81 variables
82 years
83 schema:name The Association of Fit-Fat Index with Incident Diabetes in Japanese Men: A Prospective Cohort Study
84 schema:pagination 569
85 schema:productId N50c9236c68684aa9b7899d80b4f01236
86 N5c8852a410b74ecf90c4515813a38bbd
87 Nbdb53002720f475cbfd069f45ba4c8cd
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100249067
89 https://doi.org/10.1038/s41598-017-18898-3
90 schema:sdDatePublished 2022-08-04T17:08
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N59ea9a1d9ffe46b29cb78e2a9591844e
93 schema:url https://doi.org/10.1038/s41598-017-18898-3
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N0e512c90e88d4ca889ca98816fffadab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Male
99 rdf:type schema:DefinedTerm
100 N1f1617533f8e491ebb6e03fe3ea485af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Humans
102 rdf:type schema:DefinedTerm
103 N22db2e33a180407094b8a81275e1cfa3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Diabetes Mellitus, Type 2
105 rdf:type schema:DefinedTerm
106 N23148f3909d54e46bbd5d56c9952a637 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Young Adult
108 rdf:type schema:DefinedTerm
109 N407c3a12f8b54444ac5596c85dcd8a1e rdf:first sg:person.01115730510.62
110 rdf:rest Nc9415b2fa7274ee7a3b8ea0c2c126d6f
111 N481617bef39048c9917ce80f8c66b1cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Cardiorespiratory Fitness
113 rdf:type schema:DefinedTerm
114 N50c9236c68684aa9b7899d80b4f01236 schema:name pubmed_id
115 schema:value 29330373
116 rdf:type schema:PropertyValue
117 N59ea9a1d9ffe46b29cb78e2a9591844e schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 N5a089b606f0640bfa7c2272b1dc11413 rdf:first sg:person.01101775356.65
120 rdf:rest Nd79d19a573814a52b429a477724527d3
121 N5c8852a410b74ecf90c4515813a38bbd schema:name doi
122 schema:value 10.1038/s41598-017-18898-3
123 rdf:type schema:PropertyValue
124 N69fcb4cdf0754aac89bf31b1ea2ac43a rdf:first sg:person.0601615312.21
125 rdf:rest Nc6a7e773d4a44d5fb20013d99bd129a1
126 N7a2dead2709a422893e0f9a3c3fae6e4 rdf:first sg:person.01120567020.90
127 rdf:rest N407c3a12f8b54444ac5596c85dcd8a1e
128 N9ac37cb67e7d48408b1e383928557394 rdf:first sg:person.01122201430.18
129 rdf:rest rdf:nil
130 Na8fd55077077466ab2520a30c6fb78fa schema:issueNumber 1
131 rdf:type schema:PublicationIssue
132 Nbdb53002720f475cbfd069f45ba4c8cd schema:name dimensions_id
133 schema:value pub.1100249067
134 rdf:type schema:PropertyValue
135 Nc6a7e773d4a44d5fb20013d99bd129a1 rdf:first sg:person.01204536710.37
136 rdf:rest N7a2dead2709a422893e0f9a3c3fae6e4
137 Nc9415b2fa7274ee7a3b8ea0c2c126d6f rdf:first sg:person.0616562433.31
138 rdf:rest N9ac37cb67e7d48408b1e383928557394
139 Nd2046b2b11c3495ab3c080d72a44466c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Body Mass Index
141 rdf:type schema:DefinedTerm
142 Nd6d58a41645d49209104256467c0cf8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Adult
144 rdf:type schema:DefinedTerm
145 Nd6f8a752cf7048f89a6f5e1060d5fd70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Incidence
147 rdf:type schema:DefinedTerm
148 Nd79d19a573814a52b429a477724527d3 rdf:first sg:person.01164034246.27
149 rdf:rest N69fcb4cdf0754aac89bf31b1ea2ac43a
150 Nddfce2ce88d84fca8f0eb89e0efbf188 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Risk Factors
152 rdf:type schema:DefinedTerm
153 Nde862991e4a44bf6bc38caab26a4539d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Obesity
155 rdf:type schema:DefinedTerm
156 Ne431b6113e624d0b942f794f6b163917 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Middle Aged
158 rdf:type schema:DefinedTerm
159 Ne6483629460d49528c5aed52c324460a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Prospective Studies
161 rdf:type schema:DefinedTerm
162 Nf763a2f0253241a7b2a3d97fe84a58fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Japan
164 rdf:type schema:DefinedTerm
165 Nffbeb2ce52814e13904a01e6c35cc2e0 schema:volumeNumber 8
166 rdf:type schema:PublicationVolume
167 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
168 schema:name Medical and Health Sciences
169 rdf:type schema:DefinedTerm
170 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
171 schema:name Clinical Sciences
172 rdf:type schema:DefinedTerm
173 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
174 schema:name Public Health and Health Services
175 rdf:type schema:DefinedTerm
176 sg:journal.1045337 schema:issn 2045-2322
177 schema:name Scientific Reports
178 schema:publisher Springer Nature
179 rdf:type schema:Periodical
180 sg:person.01101775356.65 schema:affiliation grid-institutes:grid.258333.c
181 schema:familyName Sloan
182 schema:givenName Robert A.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101775356.65
184 rdf:type schema:Person
185 sg:person.01115730510.62 schema:affiliation grid-institutes:grid.460109.a
186 schema:familyName Okamoto
187 schema:givenName Takashi
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115730510.62
189 rdf:type schema:Person
190 sg:person.01120567020.90 schema:affiliation grid-institutes:grid.5290.e
191 schema:familyName Kawakami
192 schema:givenName Ryoko
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120567020.90
194 rdf:type schema:Person
195 sg:person.01122201430.18 schema:affiliation grid-institutes:grid.482562.f
196 schema:familyName Miyachi
197 schema:givenName Motohiko
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122201430.18
199 rdf:type schema:Person
200 sg:person.01164034246.27 schema:affiliation grid-institutes:grid.482562.f
201 schema:familyName Sawada
202 schema:givenName Susumu S.
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164034246.27
204 rdf:type schema:Person
205 sg:person.01204536710.37 schema:affiliation grid-institutes:grid.482562.f
206 schema:familyName Gando
207 schema:givenName Yuko
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204536710.37
209 rdf:type schema:Person
210 sg:person.0601615312.21 schema:affiliation grid-institutes:grid.38142.3c
211 schema:familyName I-Min
212 schema:givenName Lee
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601615312.21
214 rdf:type schema:Person
215 sg:person.0616562433.31 schema:affiliation grid-institutes:grid.460109.a
216 schema:familyName Tsukamoto
217 schema:givenName Koji
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616562433.31
219 rdf:type schema:Person
220 sg:pub.10.1007/s11135-006-9018-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005771510
221 https://doi.org/10.1007/s11135-006-9018-6
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/sj.ijo.0802259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026699560
224 https://doi.org/10.1038/sj.ijo.0802259
225 rdf:type schema:CreativeWork
226 sg:pub.10.1186/s12955-015-0385-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042976290
227 https://doi.org/10.1186/s12955-015-0385-3
228 rdf:type schema:CreativeWork
229 grid-institutes:grid.258333.c schema:alternateName Kagoshima University, Graduate Medical and Dental School, Department of Psychosomatic Internal Medicine, Kagoshima, Japan
230 schema:name Kagoshima University, Graduate Medical and Dental School, Department of Psychosomatic Internal Medicine, Kagoshima, Japan
231 rdf:type schema:Organization
232 grid-institutes:grid.38142.3c schema:alternateName Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
233 schema:name Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
234 Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
235 rdf:type schema:Organization
236 grid-institutes:grid.460109.a schema:alternateName Tokyo Gas Co., Ltd., Health Promotion Center, Tokyo, Japan
237 schema:name Tokyo Gas Co., Ltd., Health Promotion Center, Tokyo, Japan
238 rdf:type schema:Organization
239 grid-institutes:grid.482562.f schema:alternateName National Institutes of Biomedical Innovation, Health and Nutrition, Department of Health Promotion and Exercise, Tokyo, Japan
240 schema:name National Institutes of Biomedical Innovation, Health and Nutrition, Department of Health Promotion and Exercise, Tokyo, Japan
241 rdf:type schema:Organization
242 grid-institutes:grid.5290.e schema:alternateName Waseda University, Faculty of Sport Sciences, Saitama, Japan
243 schema:name Waseda University, Faculty of Sport Sciences, Saitama, Japan
244 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...