The Association of Fit-Fat Index with Incident Diabetes in Japanese Men: A Prospective Cohort Study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-01-12

AUTHORS

Robert A. Sloan, Susumu S. Sawada, Lee I-Min, Yuko Gando, Ryoko Kawakami, Takashi Okamoto, Koji Tsukamoto, Motohiko Miyachi

ABSTRACT

Type 2 diabetes is increasing globally and in Asia. The purpose of this study was to examine the association of a fit-fat index (FFI) with diabetes incidence among Japanese men. In total 5,014 men aged 18–64 years old, who had an annual health check up with no history of major chronic disease at baseline from 2002 to 2009 were observed. CRF was estimated via cycle ergometry. Overall, 7.6% of the men developed diabetes. The mean follow-up period was 5.3 years. Hazard ratios, 95% confidence intervals and P trend for diabetes incidence were obtained using the Cox proportional hazards model while adjusting for confounding variables. High FFI demonstrated lower risk 0.54 (0.36–0.82) compared to low BMI 0.63 (0.44–0.90), low WHtR 0.64 (0.41–1.02), and High CRF 0.72 (0.51–1.03). FFI showed a marginally stronger dose response relationship across quartiles (P (trend) =0.001) compared to BMI (P (trend) =0.002), WHtR (P (trend) =0.055), and CRF (P (trend) =0.005). Overall, both fitness and fatness play independent roles in determining diabetes incidence in Japanese men. FFI may be a more advantageous physical fitness measure because it can account for changes in fitness and/or fatness. More... »

PAGES

569

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-18898-3

DOI

http://dx.doi.org/10.1038/s41598-017-18898-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100249067

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29330373


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiorespiratory Fitness", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Japan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kagoshima University, Graduate Medical and Dental School, Department of Psychosomatic Internal Medicine, Kagoshima, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258333.c", 
          "name": [
            "Kagoshima University, Graduate Medical and Dental School, Department of Psychosomatic Internal Medicine, Kagoshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sloan", 
        "givenName": "Robert A.", 
        "id": "sg:person.01101775356.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101775356.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Biomedical Innovation, Health and Nutrition, Department of Health Promotion and Exercise, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.482562.f", 
          "name": [
            "National Institutes of Biomedical Innovation, Health and Nutrition, Department of Health Promotion and Exercise, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sawada", 
        "givenName": "Susumu S.", 
        "id": "sg:person.01164034246.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164034246.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Harvard Medical School, Brigham and Women\u2019s Hospital, Boston, MA, USA", 
            "Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "I-Min", 
        "givenName": "Lee", 
        "id": "sg:person.0601615312.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601615312.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Biomedical Innovation, Health and Nutrition, Department of Health Promotion and Exercise, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.482562.f", 
          "name": [
            "National Institutes of Biomedical Innovation, Health and Nutrition, Department of Health Promotion and Exercise, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gando", 
        "givenName": "Yuko", 
        "id": "sg:person.01204536710.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204536710.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Waseda University, Faculty of Sport Sciences, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Waseda University, Faculty of Sport Sciences, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawakami", 
        "givenName": "Ryoko", 
        "id": "sg:person.01120567020.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120567020.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Gas Co., Ltd., Health Promotion Center, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.460109.a", 
          "name": [
            "Tokyo Gas Co., Ltd., Health Promotion Center, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okamoto", 
        "givenName": "Takashi", 
        "id": "sg:person.01115730510.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115730510.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Gas Co., Ltd., Health Promotion Center, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.460109.a", 
          "name": [
            "Tokyo Gas Co., Ltd., Health Promotion Center, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsukamoto", 
        "givenName": "Koji", 
        "id": "sg:person.0616562433.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616562433.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Biomedical Innovation, Health and Nutrition, Department of Health Promotion and Exercise, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.482562.f", 
          "name": [
            "National Institutes of Biomedical Innovation, Health and Nutrition, Department of Health Promotion and Exercise, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyachi", 
        "givenName": "Motohiko", 
        "id": "sg:person.01122201430.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122201430.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/sj.ijo.0802259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026699560", 
          "https://doi.org/10.1038/sj.ijo.0802259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11135-006-9018-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005771510", 
          "https://doi.org/10.1007/s11135-006-9018-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12955-015-0385-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042976290", 
          "https://doi.org/10.1186/s12955-015-0385-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01-12", 
    "datePublishedReg": "2018-01-12", 
    "description": "Type 2 diabetes is increasing globally and in Asia. The purpose of this study was to examine the association of a fit-fat index (FFI) with diabetes incidence among Japanese men. In total 5,014 men aged 18\u201364 years old, who had an annual health check up with no history of major chronic disease at baseline from 2002 to 2009 were observed. CRF was estimated via cycle ergometry. Overall, 7.6% of the men developed diabetes. The mean follow-up period was 5.3 years. Hazard ratios, 95% confidence intervals and P trend for diabetes incidence were obtained using the Cox proportional hazards model while adjusting for confounding variables. High FFI demonstrated lower risk 0.54 (0.36\u20130.82) compared to low BMI 0.63 (0.44\u20130.90), low WHtR 0.64 (0.41\u20131.02), and High CRF 0.72 (0.51\u20131.03). FFI showed a marginally stronger dose response relationship across quartiles (P (trend) =0.001) compared to BMI (P (trend) =0.002), WHtR (P (trend) =0.055), and CRF (P (trend) =0.005). Overall, both fitness and fatness play independent roles in determining diabetes incidence in Japanese men. FFI may be a more advantageous physical fitness measure because it can account for changes in fitness and/or fatness.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-017-18898-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "diabetes incidence", 
      "Japanese men", 
      "strong dose-response relationship", 
      "prospective cohort study", 
      "annual health check", 
      "type 2 diabetes", 
      "major chronic diseases", 
      "Cox proportional hazards", 
      "dose-response relationship", 
      "physical fitness measures", 
      "mean follow", 
      "incident diabetes", 
      "hazard ratio", 
      "cohort study", 
      "chronic diseases", 
      "health check", 
      "cycle ergometry", 
      "proportional hazards", 
      "P-trend", 
      "diabetes", 
      "incidence", 
      "confidence intervals", 
      "men", 
      "response relationship", 
      "independent role", 
      "CRF", 
      "association", 
      "fatness", 
      "WHtR", 
      "BMI", 
      "ergometry", 
      "follow", 
      "quartile", 
      "years", 
      "disease", 
      "baseline", 
      "index", 
      "study", 
      "fitness measures", 
      "fitness", 
      "interval", 
      "period", 
      "history", 
      "role", 
      "measures", 
      "changes", 
      "purpose", 
      "hazards", 
      "variables", 
      "relationship", 
      "ratio", 
      "trends", 
      "Asia", 
      "check"
    ], 
    "name": "The Association of Fit-Fat Index with Incident Diabetes in Japanese Men: A Prospective Cohort Study", 
    "pagination": "569", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100249067"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-18898-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29330373"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-18898-3", 
      "https://app.dimensions.ai/details/publication/pub.1100249067"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_772.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-017-18898-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-18898-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-18898-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-18898-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-18898-3'


 

This table displays all metadata directly associated to this object as RDF triples.

245 TRIPLES      22 PREDICATES      97 URIs      85 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-18898-3 schema:about N01632349cb814de7858b3e43311c530b
2 N042158aee3a6419e8384221a12c1b928
3 N14a3baa7e49b41ab9c4e66afd3caacdc
4 N1d28f044413244f6b412a2652862ed5c
5 N290e6d0d22fe45c99219b0d1147cb916
6 N432aec60149d4d76bb2a698bbf41b499
7 N576c8177c13d4b49bc0687f61e9404ad
8 N5aa4da6340d94252992b67e4f1e3fe32
9 N7cd1863b45764051814a725bb3b704ac
10 Nbdbba0f468ce4c29bd96800373e9a195
11 Nc84c5f6172d5457b85258c4485974c58
12 Nd4149855ce244be2839976f9248b1001
13 Nee0f774076624ac2b470896dac597580
14 anzsrc-for:11
15 anzsrc-for:1103
16 anzsrc-for:1117
17 schema:author Nd6d14f3d1bb44fa29dc336a258c1a6c2
18 schema:citation sg:pub.10.1007/s11135-006-9018-6
19 sg:pub.10.1038/sj.ijo.0802259
20 sg:pub.10.1186/s12955-015-0385-3
21 schema:datePublished 2018-01-12
22 schema:datePublishedReg 2018-01-12
23 schema:description Type 2 diabetes is increasing globally and in Asia. The purpose of this study was to examine the association of a fit-fat index (FFI) with diabetes incidence among Japanese men. In total 5,014 men aged 18–64 years old, who had an annual health check up with no history of major chronic disease at baseline from 2002 to 2009 were observed. CRF was estimated via cycle ergometry. Overall, 7.6% of the men developed diabetes. The mean follow-up period was 5.3 years. Hazard ratios, 95% confidence intervals and P trend for diabetes incidence were obtained using the Cox proportional hazards model while adjusting for confounding variables. High FFI demonstrated lower risk 0.54 (0.36–0.82) compared to low BMI 0.63 (0.44–0.90), low WHtR 0.64 (0.41–1.02), and High CRF 0.72 (0.51–1.03). FFI showed a marginally stronger dose response relationship across quartiles (P (trend) =0.001) compared to BMI (P (trend) =0.002), WHtR (P (trend) =0.055), and CRF (P (trend) =0.005). Overall, both fitness and fatness play independent roles in determining diabetes incidence in Japanese men. FFI may be a more advantageous physical fitness measure because it can account for changes in fitness and/or fatness.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N11d5842ea0024ecfb39fcc23bc37e363
28 N48e156753f554f00863bf77ef824e4c3
29 sg:journal.1045337
30 schema:keywords Asia
31 BMI
32 CRF
33 Cox proportional hazards
34 Japanese men
35 P-trend
36 WHtR
37 annual health check
38 association
39 baseline
40 changes
41 check
42 chronic diseases
43 cohort study
44 confidence intervals
45 cycle ergometry
46 diabetes
47 diabetes incidence
48 disease
49 dose-response relationship
50 ergometry
51 fatness
52 fitness
53 fitness measures
54 follow
55 hazard ratio
56 hazards
57 health check
58 history
59 incidence
60 incident diabetes
61 independent role
62 index
63 interval
64 major chronic diseases
65 mean follow
66 measures
67 men
68 period
69 physical fitness measures
70 proportional hazards
71 prospective cohort study
72 purpose
73 quartile
74 ratio
75 relationship
76 response relationship
77 role
78 strong dose-response relationship
79 study
80 trends
81 type 2 diabetes
82 variables
83 years
84 schema:name The Association of Fit-Fat Index with Incident Diabetes in Japanese Men: A Prospective Cohort Study
85 schema:pagination 569
86 schema:productId N141a482b7ea54a80b125af094dcdb565
87 N2934f6c79f6a4d95a9d5903f1e7a9859
88 Nd48d96843e984684aa39fc8bcda835f7
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100249067
90 https://doi.org/10.1038/s41598-017-18898-3
91 schema:sdDatePublished 2022-06-01T22:19
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher Nc5d8811ef476457180b08f1aed1075e4
94 schema:url https://doi.org/10.1038/s41598-017-18898-3
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N01632349cb814de7858b3e43311c530b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Cardiorespiratory Fitness
100 rdf:type schema:DefinedTerm
101 N042158aee3a6419e8384221a12c1b928 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Middle Aged
103 rdf:type schema:DefinedTerm
104 N11d5842ea0024ecfb39fcc23bc37e363 schema:volumeNumber 8
105 rdf:type schema:PublicationVolume
106 N141a482b7ea54a80b125af094dcdb565 schema:name doi
107 schema:value 10.1038/s41598-017-18898-3
108 rdf:type schema:PropertyValue
109 N14a3baa7e49b41ab9c4e66afd3caacdc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Incidence
111 rdf:type schema:DefinedTerm
112 N1905f939159f46d68ee52999a7253dce rdf:first sg:person.01122201430.18
113 rdf:rest rdf:nil
114 N1d28f044413244f6b412a2652862ed5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Obesity
116 rdf:type schema:DefinedTerm
117 N290e6d0d22fe45c99219b0d1147cb916 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Adult
119 rdf:type schema:DefinedTerm
120 N2934f6c79f6a4d95a9d5903f1e7a9859 schema:name dimensions_id
121 schema:value pub.1100249067
122 rdf:type schema:PropertyValue
123 N2e733cb5f49f4840b1a77de02dc2c866 rdf:first sg:person.01120567020.90
124 rdf:rest N6a77aefa6c964ee0a55e5ca083e4677e
125 N3ebb9465e078432d8dabe90fa1d9178f rdf:first sg:person.0601615312.21
126 rdf:rest N8c891a87bbd74c0e8d0158f49f13f8dd
127 N432aec60149d4d76bb2a698bbf41b499 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Diabetes Mellitus, Type 2
129 rdf:type schema:DefinedTerm
130 N48e156753f554f00863bf77ef824e4c3 schema:issueNumber 1
131 rdf:type schema:PublicationIssue
132 N530996d15e99418fabaeecac2179cad4 rdf:first sg:person.01164034246.27
133 rdf:rest N3ebb9465e078432d8dabe90fa1d9178f
134 N576c8177c13d4b49bc0687f61e9404ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Risk Factors
136 rdf:type schema:DefinedTerm
137 N5aa4da6340d94252992b67e4f1e3fe32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Body Mass Index
139 rdf:type schema:DefinedTerm
140 N67ecceb0efa141d78fd07e6517c57127 rdf:first sg:person.0616562433.31
141 rdf:rest N1905f939159f46d68ee52999a7253dce
142 N6a77aefa6c964ee0a55e5ca083e4677e rdf:first sg:person.01115730510.62
143 rdf:rest N67ecceb0efa141d78fd07e6517c57127
144 N7cd1863b45764051814a725bb3b704ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Japan
146 rdf:type schema:DefinedTerm
147 N8c891a87bbd74c0e8d0158f49f13f8dd rdf:first sg:person.01204536710.37
148 rdf:rest N2e733cb5f49f4840b1a77de02dc2c866
149 Nbdbba0f468ce4c29bd96800373e9a195 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Prospective Studies
151 rdf:type schema:DefinedTerm
152 Nc5d8811ef476457180b08f1aed1075e4 schema:name Springer Nature - SN SciGraph project
153 rdf:type schema:Organization
154 Nc84c5f6172d5457b85258c4485974c58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Young Adult
156 rdf:type schema:DefinedTerm
157 Nd4149855ce244be2839976f9248b1001 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Male
159 rdf:type schema:DefinedTerm
160 Nd48d96843e984684aa39fc8bcda835f7 schema:name pubmed_id
161 schema:value 29330373
162 rdf:type schema:PropertyValue
163 Nd6d14f3d1bb44fa29dc336a258c1a6c2 rdf:first sg:person.01101775356.65
164 rdf:rest N530996d15e99418fabaeecac2179cad4
165 Nee0f774076624ac2b470896dac597580 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Humans
167 rdf:type schema:DefinedTerm
168 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
169 schema:name Medical and Health Sciences
170 rdf:type schema:DefinedTerm
171 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
172 schema:name Clinical Sciences
173 rdf:type schema:DefinedTerm
174 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
175 schema:name Public Health and Health Services
176 rdf:type schema:DefinedTerm
177 sg:journal.1045337 schema:issn 2045-2322
178 schema:name Scientific Reports
179 schema:publisher Springer Nature
180 rdf:type schema:Periodical
181 sg:person.01101775356.65 schema:affiliation grid-institutes:grid.258333.c
182 schema:familyName Sloan
183 schema:givenName Robert A.
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101775356.65
185 rdf:type schema:Person
186 sg:person.01115730510.62 schema:affiliation grid-institutes:grid.460109.a
187 schema:familyName Okamoto
188 schema:givenName Takashi
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115730510.62
190 rdf:type schema:Person
191 sg:person.01120567020.90 schema:affiliation grid-institutes:grid.5290.e
192 schema:familyName Kawakami
193 schema:givenName Ryoko
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120567020.90
195 rdf:type schema:Person
196 sg:person.01122201430.18 schema:affiliation grid-institutes:grid.482562.f
197 schema:familyName Miyachi
198 schema:givenName Motohiko
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122201430.18
200 rdf:type schema:Person
201 sg:person.01164034246.27 schema:affiliation grid-institutes:grid.482562.f
202 schema:familyName Sawada
203 schema:givenName Susumu S.
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164034246.27
205 rdf:type schema:Person
206 sg:person.01204536710.37 schema:affiliation grid-institutes:grid.482562.f
207 schema:familyName Gando
208 schema:givenName Yuko
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204536710.37
210 rdf:type schema:Person
211 sg:person.0601615312.21 schema:affiliation grid-institutes:grid.38142.3c
212 schema:familyName I-Min
213 schema:givenName Lee
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601615312.21
215 rdf:type schema:Person
216 sg:person.0616562433.31 schema:affiliation grid-institutes:grid.460109.a
217 schema:familyName Tsukamoto
218 schema:givenName Koji
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616562433.31
220 rdf:type schema:Person
221 sg:pub.10.1007/s11135-006-9018-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005771510
222 https://doi.org/10.1007/s11135-006-9018-6
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/sj.ijo.0802259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026699560
225 https://doi.org/10.1038/sj.ijo.0802259
226 rdf:type schema:CreativeWork
227 sg:pub.10.1186/s12955-015-0385-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042976290
228 https://doi.org/10.1186/s12955-015-0385-3
229 rdf:type schema:CreativeWork
230 grid-institutes:grid.258333.c schema:alternateName Kagoshima University, Graduate Medical and Dental School, Department of Psychosomatic Internal Medicine, Kagoshima, Japan
231 schema:name Kagoshima University, Graduate Medical and Dental School, Department of Psychosomatic Internal Medicine, Kagoshima, Japan
232 rdf:type schema:Organization
233 grid-institutes:grid.38142.3c schema:alternateName Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
234 schema:name Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
235 Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
236 rdf:type schema:Organization
237 grid-institutes:grid.460109.a schema:alternateName Tokyo Gas Co., Ltd., Health Promotion Center, Tokyo, Japan
238 schema:name Tokyo Gas Co., Ltd., Health Promotion Center, Tokyo, Japan
239 rdf:type schema:Organization
240 grid-institutes:grid.482562.f schema:alternateName National Institutes of Biomedical Innovation, Health and Nutrition, Department of Health Promotion and Exercise, Tokyo, Japan
241 schema:name National Institutes of Biomedical Innovation, Health and Nutrition, Department of Health Promotion and Exercise, Tokyo, Japan
242 rdf:type schema:Organization
243 grid-institutes:grid.5290.e schema:alternateName Waseda University, Faculty of Sport Sciences, Saitama, Japan
244 schema:name Waseda University, Faculty of Sport Sciences, Saitama, Japan
245 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...