Ensemble landmarking of 3D facial surface scans View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Markus A. de Jong, Pirro Hysi, Tim Spector, Wiro Niessen, Maarten J. Koudstaal, Eppo B. Wolvius, Manfred Kayser, Stefan Böhringer

ABSTRACT

Landmarking of 3D facial surface scans is an important analysis step in medical and biological applications, such as genome-wide association studies (GWAS). Manual landmarking is often employed with considerable cost and rater dependent variability. Landmarking automatically with minimal training is therefore desirable. We apply statistical ensemble methods to improve automated landmarking of 3D facial surface scans. Base landmarking algorithms using features derived from 3D surface scans are combined using either bagging or stacking. A focus is on low training complexity of maximal 40 training samples with template based landmarking algorithms that have proved successful in such applications. Additionally, we use correlations between landmark coordinates by introducing a search strategy guided by principal components (PCs) of training landmarks. We found that bagging has no useful impact, while stacking strongly improves accuracy to an average error of 1.7 mm across all 21 landmarks in this study, a 22% improvement as compared to a previous, comparable algorithm. Heritability estimates in twin pairs also show improvements when using facial distances from landmarks. Ensemble methods allow improvement of automatic, accurate landmarking of 3D facial images with minimal training which is advantageous in large cohort studies for GWAS and when landmarking needs change or data quality varies. More... »

PAGES

12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-18294-x

DOI

http://dx.doi.org/10.1038/s41598-017-18294-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100172317

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29311563


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, Erasmus MC University Medical Center Rotterdam, 3015 CE, Rotterdam, The Netherlands", 
            "Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands", 
            "Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, 3015 CE, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Jong", 
        "givenName": "Markus A.", 
        "id": "sg:person.0642145613.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642145613.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Department of Twin Research & Genetic Epidemiology, King\u2019s College London, SE1 7EH, London, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hysi", 
        "givenName": "Pirro", 
        "id": "sg:person.01254523225.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254523225.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Department of Twin Research & Genetic Epidemiology, King\u2019s College London, SE1 7EH, London, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spector", 
        "givenName": "Tim", 
        "id": "sg:person.014424006237.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424006237.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Department of Medical Informatics, Erasmus MC University Medical Center Rotterdam, 3015 CE, Rotterdam, The Netherlands", 
            "Faculty of Applied Sciences, Delft University of Technology, 2628 CJ, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niessen", 
        "givenName": "Wiro", 
        "id": "sg:person.01051150205.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051150205.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, Erasmus MC University Medical Center Rotterdam, 3015 CE, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koudstaal", 
        "givenName": "Maarten J.", 
        "id": "sg:person.01065262653.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065262653.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, Erasmus MC University Medical Center Rotterdam, 3015 CE, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wolvius", 
        "givenName": "Eppo B.", 
        "id": "sg:person.0640446753.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640446753.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, 3015 CE, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kayser", 
        "givenName": "Manfred", 
        "id": "sg:person.01256745715.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256745715.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00f6hringer", 
        "givenName": "Stefan", 
        "id": "sg:person.01124750304.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124750304.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ejhg.2011.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003851276", 
          "https://doi.org/10.1038/ejhg.2011.110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1004224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004887013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.1996.0043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009708469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.a.34157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018650201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0109033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018714126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0109033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018714126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2011.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020234296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1002932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021287832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/cviu.1995.1004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021804206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmg.2007.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022598541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fsigen.2015.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023225532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-70807-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026313873", 
          "https://doi.org/10.1007/978-0-387-70807-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-70807-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026313873", 
          "https://doi.org/10.1007/978-0-387-70807-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033695320", 
          "https://doi.org/10.1186/1471-2105-14-232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033695320", 
          "https://doi.org/10.1186/1471-2105-14-232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1006149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034795353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1006149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034795353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejhg.2011.135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035155305", 
          "https://doi.org/10.1038/ejhg.2011.135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejhg.5201673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035702162", 
          "https://doi.org/10.1038/sj.ejhg.5201673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejhg.5201673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035702162", 
          "https://doi.org/10.1038/sj.ejhg.5201673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1006174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049708324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1006174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049708324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.598235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2015.2496183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061644695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2015.2469286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219691315500198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063004380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2011-0237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064292700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5195/d3000.2013.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072683560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2017.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074241443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2013.6611039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078797789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep45885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084932840", 
          "https://doi.org/10.1038/srep45885"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Landmarking of 3D facial surface scans is an important analysis step in medical and biological applications, such as genome-wide association studies (GWAS). Manual landmarking is often employed with considerable cost and rater dependent variability. Landmarking automatically with minimal training is therefore desirable. We apply statistical ensemble methods to improve automated landmarking of 3D facial surface scans. Base landmarking algorithms using features derived from 3D surface scans are combined using either bagging or stacking. A focus is on low training complexity of maximal 40 training samples with template based landmarking algorithms that have proved successful in such applications. Additionally, we use correlations between landmark coordinates by introducing a search strategy guided by principal components (PCs) of training landmarks. We found that bagging has no useful impact, while stacking strongly improves accuracy to an average error of 1.7\u2009mm across all 21 landmarks in this study, a 22% improvement as compared to a previous, comparable algorithm. Heritability estimates in twin pairs also show improvements when using facial distances from landmarks. Ensemble methods allow improvement of automatic, accurate landmarking of 3D facial images with minimal training which is advantageous in large cohort studies for GWAS and when landmarking needs change or data quality varies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-18294-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Ensemble landmarking of 3D facial surface scans", 
    "pagination": "12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "691dfdab27cf8a9cc0bc3df39c0deb0a9bb8675dafd201d38aa386c0917c5fba"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29311563"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-18294-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100172317"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-18294-x", 
      "https://app.dimensions.ai/details/publication/pub.1100172317"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000544.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-18294-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-18294-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-18294-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-18294-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-18294-x'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-18294-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6558b84c9a4d43be856eafb861209db0
4 schema:citation sg:pub.10.1007/978-0-387-70807-2
5 sg:pub.10.1038/ejhg.2011.110
6 sg:pub.10.1038/ejhg.2011.135
7 sg:pub.10.1038/sj.ejhg.5201673
8 sg:pub.10.1038/srep45885
9 sg:pub.10.1186/1471-2105-14-232
10 https://doi.org/10.1002/ajmg.a.34157
11 https://doi.org/10.1006/cviu.1995.1004
12 https://doi.org/10.1006/nimg.1996.0043
13 https://doi.org/10.1016/j.ajhg.2011.12.021
14 https://doi.org/10.1016/j.compbiomed.2017.01.018
15 https://doi.org/10.1016/j.ejmg.2007.10.002
16 https://doi.org/10.1016/j.fsigen.2015.08.004
17 https://doi.org/10.1109/34.598235
18 https://doi.org/10.1109/embc.2013.6611039
19 https://doi.org/10.1109/tip.2015.2496183
20 https://doi.org/10.1109/tpami.2015.2469286
21 https://doi.org/10.1142/s0219691315500198
22 https://doi.org/10.1210/jc.2011-0237
23 https://doi.org/10.1371/journal.pgen.1002932
24 https://doi.org/10.1371/journal.pgen.1004224
25 https://doi.org/10.1371/journal.pgen.1006149
26 https://doi.org/10.1371/journal.pgen.1006174
27 https://doi.org/10.1371/journal.pone.0109033
28 https://doi.org/10.5195/d3000.2013.14
29 schema:datePublished 2018-12
30 schema:datePublishedReg 2018-12-01
31 schema:description Landmarking of 3D facial surface scans is an important analysis step in medical and biological applications, such as genome-wide association studies (GWAS). Manual landmarking is often employed with considerable cost and rater dependent variability. Landmarking automatically with minimal training is therefore desirable. We apply statistical ensemble methods to improve automated landmarking of 3D facial surface scans. Base landmarking algorithms using features derived from 3D surface scans are combined using either bagging or stacking. A focus is on low training complexity of maximal 40 training samples with template based landmarking algorithms that have proved successful in such applications. Additionally, we use correlations between landmark coordinates by introducing a search strategy guided by principal components (PCs) of training landmarks. We found that bagging has no useful impact, while stacking strongly improves accuracy to an average error of 1.7 mm across all 21 landmarks in this study, a 22% improvement as compared to a previous, comparable algorithm. Heritability estimates in twin pairs also show improvements when using facial distances from landmarks. Ensemble methods allow improvement of automatic, accurate landmarking of 3D facial images with minimal training which is advantageous in large cohort studies for GWAS and when landmarking needs change or data quality varies.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N52b423d9c2594221acd4eab930ca6e53
36 N577d982f14f84c37846c4314f3c2265a
37 sg:journal.1045337
38 schema:name Ensemble landmarking of 3D facial surface scans
39 schema:pagination 12
40 schema:productId N42c48d4afd95478c96d99bd0e606177e
41 N6d21aa714ed648518c0c84593f9af03c
42 N766f3e09573c425da0a5602c23773424
43 N90f3ce494701486c8e5f01a1a88ec0be
44 N9e7be031ab6746a7960dfead5df03348
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100172317
46 https://doi.org/10.1038/s41598-017-18294-x
47 schema:sdDatePublished 2019-04-10T18:25
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N47cd568421ac49fb818e463681c08064
50 schema:url https://www.nature.com/articles/s41598-017-18294-x
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N0e1e54ea41d242aca377e1f1528f9663 rdf:first sg:person.01051150205.72
55 rdf:rest N28c142f659e841ab88e243375977684d
56 N234c0cdcd62e46da8a64b9caa23ac4f7 rdf:first sg:person.01124750304.62
57 rdf:rest rdf:nil
58 N28c142f659e841ab88e243375977684d rdf:first sg:person.01065262653.31
59 rdf:rest N73cb034cd54548a8a089dbc9020898c8
60 N42c48d4afd95478c96d99bd0e606177e schema:name doi
61 schema:value 10.1038/s41598-017-18294-x
62 rdf:type schema:PropertyValue
63 N47cd568421ac49fb818e463681c08064 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N52b423d9c2594221acd4eab930ca6e53 schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 N577d982f14f84c37846c4314f3c2265a schema:volumeNumber 8
68 rdf:type schema:PublicationVolume
69 N6558b84c9a4d43be856eafb861209db0 rdf:first sg:person.0642145613.41
70 rdf:rest N8cc440d1b7df4a5c9dfadbeaed3a2071
71 N6d21aa714ed648518c0c84593f9af03c schema:name pubmed_id
72 schema:value 29311563
73 rdf:type schema:PropertyValue
74 N73cb034cd54548a8a089dbc9020898c8 rdf:first sg:person.0640446753.15
75 rdf:rest Na85cae8ac7b64645b21da318f16ae8b3
76 N766f3e09573c425da0a5602c23773424 schema:name dimensions_id
77 schema:value pub.1100172317
78 rdf:type schema:PropertyValue
79 N8cc440d1b7df4a5c9dfadbeaed3a2071 rdf:first sg:person.01254523225.05
80 rdf:rest Ne040d4141f304c9f8b09c7dc3e6a0093
81 N90f3ce494701486c8e5f01a1a88ec0be schema:name readcube_id
82 schema:value 691dfdab27cf8a9cc0bc3df39c0deb0a9bb8675dafd201d38aa386c0917c5fba
83 rdf:type schema:PropertyValue
84 N9e7be031ab6746a7960dfead5df03348 schema:name nlm_unique_id
85 schema:value 101563288
86 rdf:type schema:PropertyValue
87 Na85cae8ac7b64645b21da318f16ae8b3 rdf:first sg:person.01256745715.59
88 rdf:rest N234c0cdcd62e46da8a64b9caa23ac4f7
89 Ne040d4141f304c9f8b09c7dc3e6a0093 rdf:first sg:person.014424006237.85
90 rdf:rest N0e1e54ea41d242aca377e1f1528f9663
91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
92 schema:name Information and Computing Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
95 schema:name Artificial Intelligence and Image Processing
96 rdf:type schema:DefinedTerm
97 sg:journal.1045337 schema:issn 2045-2322
98 schema:name Scientific Reports
99 rdf:type schema:Periodical
100 sg:person.01051150205.72 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
101 schema:familyName Niessen
102 schema:givenName Wiro
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051150205.72
104 rdf:type schema:Person
105 sg:person.01065262653.31 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
106 schema:familyName Koudstaal
107 schema:givenName Maarten J.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065262653.31
109 rdf:type schema:Person
110 sg:person.01124750304.62 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
111 schema:familyName Böhringer
112 schema:givenName Stefan
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124750304.62
114 rdf:type schema:Person
115 sg:person.01254523225.05 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
116 schema:familyName Hysi
117 schema:givenName Pirro
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254523225.05
119 rdf:type schema:Person
120 sg:person.01256745715.59 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
121 schema:familyName Kayser
122 schema:givenName Manfred
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256745715.59
124 rdf:type schema:Person
125 sg:person.014424006237.85 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
126 schema:familyName Spector
127 schema:givenName Tim
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424006237.85
129 rdf:type schema:Person
130 sg:person.0640446753.15 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
131 schema:familyName Wolvius
132 schema:givenName Eppo B.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640446753.15
134 rdf:type schema:Person
135 sg:person.0642145613.41 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
136 schema:familyName de Jong
137 schema:givenName Markus A.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642145613.41
139 rdf:type schema:Person
140 sg:pub.10.1007/978-0-387-70807-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026313873
141 https://doi.org/10.1007/978-0-387-70807-2
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/ejhg.2011.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003851276
144 https://doi.org/10.1038/ejhg.2011.110
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/ejhg.2011.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035155305
147 https://doi.org/10.1038/ejhg.2011.135
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/sj.ejhg.5201673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035702162
150 https://doi.org/10.1038/sj.ejhg.5201673
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/srep45885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084932840
153 https://doi.org/10.1038/srep45885
154 rdf:type schema:CreativeWork
155 sg:pub.10.1186/1471-2105-14-232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033695320
156 https://doi.org/10.1186/1471-2105-14-232
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/ajmg.a.34157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018650201
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1006/cviu.1995.1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021804206
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1006/nimg.1996.0043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009708469
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.ajhg.2011.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020234296
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.compbiomed.2017.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074241443
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.ejmg.2007.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022598541
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.fsigen.2015.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023225532
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/34.598235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156624
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/embc.2013.6611039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078797789
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/tip.2015.2496183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061644695
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/tpami.2015.2469286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744932
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1142/s0219691315500198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063004380
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1210/jc.2011-0237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064292700
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1371/journal.pgen.1002932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021287832
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1371/journal.pgen.1004224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004887013
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1371/journal.pgen.1006149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034795353
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1371/journal.pgen.1006174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049708324
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1371/journal.pone.0109033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018714126
193 rdf:type schema:CreativeWork
194 https://doi.org/10.5195/d3000.2013.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072683560
195 rdf:type schema:CreativeWork
196 https://www.grid.ac/institutes/grid.10419.3d schema:alternateName Leiden University Medical Center
197 schema:name Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.13097.3c schema:alternateName King's College London
200 schema:name Department of Twin Research & Genetic Epidemiology, King’s College London, SE1 7EH, London, United Kingdom
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.5292.c schema:alternateName Delft University of Technology
203 schema:name Department of Medical Informatics, Erasmus MC University Medical Center Rotterdam, 3015 CE, Rotterdam, The Netherlands
204 Faculty of Applied Sciences, Delft University of Technology, 2628 CJ, Delft, The Netherlands
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.5645.2 schema:alternateName Erasmus University Medical Center
207 schema:name Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, 3015 CE, Rotterdam, The Netherlands
208 Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
209 Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, Erasmus MC University Medical Center Rotterdam, 3015 CE, Rotterdam, The Netherlands
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...