Plasma channel undulator excited by high-order laser modes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

J. W. Wang, C. B. Schroeder, R. Li, M. Zepf, S. G. Rykovanov

ABSTRACT

The possibility of utilizing plasma undulators and plasma accelerators to produce compact ultraviolet and X-ray sources, has attracted considerable interest for a few decades. This interest has been driven by the great potential to decrease the threshold for accessing such sources, which are mainly provided by a few dedicated large-scale synchrotron or free-electron laser (FEL) facilities. However, the broad radiation bandwidth of such plasma devices limits the source brightness and makes it difficult for the FEL instability to develop. Here, using multi-dimensional particle-in-cell (PIC) simulations, we demonstrate that a plasma undulator generated by the beating of a mixture of high-order laser modes propagating inside a plasma channel, leads to a few percent radiation bandwidth. The strength of the undulator can reach unity, the period can be less than a millimeter, and the number of undulator periods can be significantly increased by a phase locking technique based on the longitudinal tapering. Polarization control of such an undulator can be achieved by appropriately choosing the phase of the modes. According to our results, in the fully beam loaded regime, the electron current in the plasma undulator can reach 0.3 kA level, making such an undulator a potential candidate towards a table-top FEL. More... »

PAGES

16884

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-16971-5

DOI

http://dx.doi.org/10.1038/s41598-017-16971-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1093066700

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29203779


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shanghai Institute of Optics and Fine Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.458462.9", 
          "name": [
            "Helmholtz Institute Jena, Fr\u00f6belstieg 3, 07743, Jena, Germany", 
            "Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "J. W.", 
        "id": "sg:person.011435201645.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011435201645.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schroeder", 
        "givenName": "C. B.", 
        "id": "sg:person.010351024722.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010351024722.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Institute of Optics and Fine Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.458462.9", 
          "name": [
            "Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "R.", 
        "id": "sg:person.0664647111.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664647111.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen's University Belfast", 
          "id": "https://www.grid.ac/institutes/grid.4777.3", 
          "name": [
            "Helmholtz Institute Jena, Fr\u00f6belstieg 3, 07743, Jena, Germany", 
            "Institut f\u00fcr Optik und Quantenelektronik, Friedrich-Schiller-Universit\u00e4t Jena, Max-Wien-Platz 1, 07743, Jena, Germany", 
            "Department of Physics and Astronomy, Queen\u2019s University Belfast, BT7 1NN, Belfast, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zepf", 
        "givenName": "M.", 
        "id": "sg:person.0575563512.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575563512.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz Institute Jena", 
          "id": "https://www.grid.ac/institutes/grid.450266.3", 
          "name": [
            "Helmholtz Institute Jena, Fr\u00f6belstieg 3, 07743, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rykovanov", 
        "givenName": "S. G.", 
        "id": "sg:person.0622334032.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622334032.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms5736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000846480", 
          "https://doi.org/10.1038/ncomms5736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevaccelbeams.19.071301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003208917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevaccelbeams.19.071301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003208917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35021099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005779397", 
          "https://doi.org/10.1038/35021099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/38/9/022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007495953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008080020", 
          "https://doi.org/10.1038/ncomms5371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008683664", 
          "https://doi.org/10.1038/nphys966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/pt.3.2845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008685481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015105907", 
          "https://doi.org/10.1038/ncomms3421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015710152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015710152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevstab.14.031303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016215184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevstab.14.031303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016215184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.245002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019423721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.245002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019423721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature16525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020600701", 
          "https://doi.org/10.1038/nature16525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021672671", 
          "https://doi.org/10.1038/nphys811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1025833102", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1025833102", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2007.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028749441", 
          "https://doi.org/10.1038/nphoton.2007.76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033294476", 
          "https://doi.org/10.1038/nphys1404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033294476", 
          "https://doi.org/10.1038/nphys1404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033566360", 
          "https://doi.org/10.1038/nphoton.2010.176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037287652", 
          "https://doi.org/10.1038/ncomms7860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040198457", 
          "https://doi.org/10.1038/35065045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040198457", 
          "https://doi.org/10.1038/35065045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.144801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044586333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.144801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044586333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevaccelbeams.19.090703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045946179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevaccelbeams.19.090703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045946179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052746552", 
          "https://doi.org/10.1038/nphys1789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/lsa.2016.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053331423", 
          "https://doi.org/10.1038/lsa.2016.15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3430638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057950827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.866183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058119371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.056505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.056505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.164802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.164802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.145003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.145003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.184802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.184802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.43.267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.43.267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.046101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.046101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.135004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.135004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.135005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.135005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.1229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.1229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.88.015006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.88.015006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jqe.1987.1073557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061305837"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "The possibility of utilizing plasma undulators and plasma accelerators to produce compact ultraviolet and X-ray sources, has attracted considerable interest for a few decades. This interest has been driven by the great potential to decrease the threshold for accessing such sources, which are mainly provided by a few dedicated large-scale synchrotron or free-electron laser (FEL) facilities. However, the broad radiation bandwidth of such plasma devices limits the source brightness and makes it difficult for the FEL instability to develop. Here, using multi-dimensional particle-in-cell (PIC) simulations, we demonstrate that a plasma undulator generated by the beating of a mixture of high-order laser modes propagating inside a plasma channel, leads to a few percent radiation bandwidth. The strength of the undulator can reach unity, the period can be less than a millimeter, and the number of undulator periods can be significantly increased by a phase locking technique based on the longitudinal tapering. Polarization control of such an undulator can be achieved by appropriately choosing the phase of the modes. According to our results, in the fully beam loaded regime, the electron current in the plasma undulator can reach 0.3\u2009kA level, making such an undulator a potential candidate towards a table-top FEL.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-16971-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Plasma channel undulator excited by high-order laser modes", 
    "pagination": "16884", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "475b7154fb69c07a71675d7265d36c323fbc729cacc916c1d234e6c03a3d4c01"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29203779"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-16971-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1093066700"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-16971-5", 
      "https://app.dimensions.ai/details/publication/pub.1093066700"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000552.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-16971-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-16971-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-16971-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-16971-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-16971-5'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      65 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-16971-5 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N57bba82a4d5d44eb837e62878901e692
4 schema:citation sg:pub.10.1038/35021099
5 sg:pub.10.1038/35065045
6 sg:pub.10.1038/lsa.2016.15
7 sg:pub.10.1038/nature16525
8 sg:pub.10.1038/ncomms3421
9 sg:pub.10.1038/ncomms5371
10 sg:pub.10.1038/ncomms5736
11 sg:pub.10.1038/ncomms7860
12 sg:pub.10.1038/nphoton.2007.76
13 sg:pub.10.1038/nphoton.2010.176
14 sg:pub.10.1038/nphys1404
15 sg:pub.10.1038/nphys1789
16 sg:pub.10.1038/nphys811
17 sg:pub.10.1038/nphys966
18 https://app.dimensions.ai/details/publication/pub.1025833102
19 https://doi.org/10.1063/1.3430638
20 https://doi.org/10.1063/1.866183
21 https://doi.org/10.1063/pt.3.2845
22 https://doi.org/10.1088/0953-4075/38/9/022
23 https://doi.org/10.1103/physrevaccelbeams.19.071301
24 https://doi.org/10.1103/physrevaccelbeams.19.090703
25 https://doi.org/10.1103/physreve.65.056505
26 https://doi.org/10.1103/physrevlett.112.164802
27 https://doi.org/10.1103/physrevlett.113.245002
28 https://doi.org/10.1103/physrevlett.114.145003
29 https://doi.org/10.1103/physrevlett.115.184802
30 https://doi.org/10.1103/physrevlett.117.144801
31 https://doi.org/10.1103/physrevlett.43.267
32 https://doi.org/10.1103/physrevlett.91.046101
33 https://doi.org/10.1103/physrevlett.93.135004
34 https://doi.org/10.1103/physrevlett.93.135005
35 https://doi.org/10.1103/physrevstab.14.031303
36 https://doi.org/10.1103/revmodphys.81.1229
37 https://doi.org/10.1103/revmodphys.85.1
38 https://doi.org/10.1103/revmodphys.88.015006
39 https://doi.org/10.1109/jqe.1987.1073557
40 schema:datePublished 2017-12
41 schema:datePublishedReg 2017-12-01
42 schema:description The possibility of utilizing plasma undulators and plasma accelerators to produce compact ultraviolet and X-ray sources, has attracted considerable interest for a few decades. This interest has been driven by the great potential to decrease the threshold for accessing such sources, which are mainly provided by a few dedicated large-scale synchrotron or free-electron laser (FEL) facilities. However, the broad radiation bandwidth of such plasma devices limits the source brightness and makes it difficult for the FEL instability to develop. Here, using multi-dimensional particle-in-cell (PIC) simulations, we demonstrate that a plasma undulator generated by the beating of a mixture of high-order laser modes propagating inside a plasma channel, leads to a few percent radiation bandwidth. The strength of the undulator can reach unity, the period can be less than a millimeter, and the number of undulator periods can be significantly increased by a phase locking technique based on the longitudinal tapering. Polarization control of such an undulator can be achieved by appropriately choosing the phase of the modes. According to our results, in the fully beam loaded regime, the electron current in the plasma undulator can reach 0.3 kA level, making such an undulator a potential candidate towards a table-top FEL.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N425c107276cb4b5daca4453e2c988da2
47 N7adf85d417c74d1e970b584d3c525023
48 sg:journal.1045337
49 schema:name Plasma channel undulator excited by high-order laser modes
50 schema:pagination 16884
51 schema:productId N5ad56cd58e5f4439b59e05b0a2edaafd
52 N77a95fc8a01c45a6a252c4f195325614
53 N7d8551db7ef0473e82552957c18b3117
54 N9eddee70e5dd4886962aaabd2b23ef05
55 Nf97845286b9047eebb32025850fd1e7f
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093066700
57 https://doi.org/10.1038/s41598-017-16971-5
58 schema:sdDatePublished 2019-04-11T00:23
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N94225b9e98e546d295413c11931ce3ff
61 schema:url https://www.nature.com/articles/s41598-017-16971-5
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N425c107276cb4b5daca4453e2c988da2 schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 N5457a87eff30453ea1ea0c75cb9fdbbc rdf:first sg:person.0575563512.68
68 rdf:rest N66df42920d8949e6ac2279cc46c25a1a
69 N57bba82a4d5d44eb837e62878901e692 rdf:first sg:person.011435201645.72
70 rdf:rest Nc4e9ad749c554632b9a4480f1f9cd799
71 N5ad56cd58e5f4439b59e05b0a2edaafd schema:name pubmed_id
72 schema:value 29203779
73 rdf:type schema:PropertyValue
74 N66df42920d8949e6ac2279cc46c25a1a rdf:first sg:person.0622334032.21
75 rdf:rest rdf:nil
76 N77a95fc8a01c45a6a252c4f195325614 schema:name readcube_id
77 schema:value 475b7154fb69c07a71675d7265d36c323fbc729cacc916c1d234e6c03a3d4c01
78 rdf:type schema:PropertyValue
79 N7adf85d417c74d1e970b584d3c525023 schema:volumeNumber 7
80 rdf:type schema:PublicationVolume
81 N7d8551db7ef0473e82552957c18b3117 schema:name dimensions_id
82 schema:value pub.1093066700
83 rdf:type schema:PropertyValue
84 N94225b9e98e546d295413c11931ce3ff schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N9eddee70e5dd4886962aaabd2b23ef05 schema:name nlm_unique_id
87 schema:value 101563288
88 rdf:type schema:PropertyValue
89 N9f8dced65c0c47ad910e6344f461c423 rdf:first sg:person.0664647111.14
90 rdf:rest N5457a87eff30453ea1ea0c75cb9fdbbc
91 Nc4e9ad749c554632b9a4480f1f9cd799 rdf:first sg:person.010351024722.01
92 rdf:rest N9f8dced65c0c47ad910e6344f461c423
93 Nf97845286b9047eebb32025850fd1e7f schema:name doi
94 schema:value 10.1038/s41598-017-16971-5
95 rdf:type schema:PropertyValue
96 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
97 schema:name Physical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
100 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
101 rdf:type schema:DefinedTerm
102 sg:journal.1045337 schema:issn 2045-2322
103 schema:name Scientific Reports
104 rdf:type schema:Periodical
105 sg:person.010351024722.01 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
106 schema:familyName Schroeder
107 schema:givenName C. B.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010351024722.01
109 rdf:type schema:Person
110 sg:person.011435201645.72 schema:affiliation https://www.grid.ac/institutes/grid.458462.9
111 schema:familyName Wang
112 schema:givenName J. W.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011435201645.72
114 rdf:type schema:Person
115 sg:person.0575563512.68 schema:affiliation https://www.grid.ac/institutes/grid.4777.3
116 schema:familyName Zepf
117 schema:givenName M.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575563512.68
119 rdf:type schema:Person
120 sg:person.0622334032.21 schema:affiliation https://www.grid.ac/institutes/grid.450266.3
121 schema:familyName Rykovanov
122 schema:givenName S. G.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622334032.21
124 rdf:type schema:Person
125 sg:person.0664647111.14 schema:affiliation https://www.grid.ac/institutes/grid.458462.9
126 schema:familyName Li
127 schema:givenName R.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664647111.14
129 rdf:type schema:Person
130 sg:pub.10.1038/35021099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005779397
131 https://doi.org/10.1038/35021099
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/35065045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040198457
134 https://doi.org/10.1038/35065045
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/lsa.2016.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053331423
137 https://doi.org/10.1038/lsa.2016.15
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nature16525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020600701
140 https://doi.org/10.1038/nature16525
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/ncomms3421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015105907
143 https://doi.org/10.1038/ncomms3421
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/ncomms5371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008080020
146 https://doi.org/10.1038/ncomms5371
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/ncomms5736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000846480
149 https://doi.org/10.1038/ncomms5736
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/ncomms7860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037287652
152 https://doi.org/10.1038/ncomms7860
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nphoton.2007.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028749441
155 https://doi.org/10.1038/nphoton.2007.76
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nphoton.2010.176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033566360
158 https://doi.org/10.1038/nphoton.2010.176
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nphys1404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033294476
161 https://doi.org/10.1038/nphys1404
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nphys1789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052746552
164 https://doi.org/10.1038/nphys1789
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nphys811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021672671
167 https://doi.org/10.1038/nphys811
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nphys966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008683664
170 https://doi.org/10.1038/nphys966
171 rdf:type schema:CreativeWork
172 https://app.dimensions.ai/details/publication/pub.1025833102 schema:CreativeWork
173 https://doi.org/10.1063/1.3430638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057950827
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1063/1.866183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058119371
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1063/pt.3.2845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008685481
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1088/0953-4075/38/9/022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007495953
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevaccelbeams.19.071301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003208917
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevaccelbeams.19.090703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045946179
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physreve.65.056505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060728532
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.112.164802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060762725
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.113.245002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019423721
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.114.145003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763523
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.115.184802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764348
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.117.144801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044586333
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.43.267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060784401
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevlett.91.046101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827028
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.93.135004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829046
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevlett.93.135005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829047
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevstab.14.031303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016215184
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/revmodphys.81.1229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839670
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/revmodphys.85.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015710152
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/revmodphys.88.015006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839793
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/jqe.1987.1073557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061305837
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory
216 schema:name Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, California, USA
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.450266.3 schema:alternateName Helmholtz Institute Jena
219 schema:name Helmholtz Institute Jena, Fröbelstieg 3, 07743, Jena, Germany
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.458462.9 schema:alternateName Shanghai Institute of Optics and Fine Mechanics
222 schema:name Helmholtz Institute Jena, Fröbelstieg 3, 07743, Jena, Germany
223 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.4777.3 schema:alternateName Queen's University Belfast
226 schema:name Department of Physics and Astronomy, Queen’s University Belfast, BT7 1NN, Belfast, UK
227 Helmholtz Institute Jena, Fröbelstieg 3, 07743, Jena, Germany
228 Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...