A fast approach to detect gene–gene synergy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Pengwei Xing, Yuan Chen, Jun Gao, Lianyang Bai, Zheming Yuan

ABSTRACT

Selecting informative genes, including individually discriminant genes and synergic genes, from expression data has been useful for medical diagnosis and prognosis. Detecting synergic genes is more difficult than selecting individually discriminant genes. Several efforts have recently been made to detect gene-gene synergies, such as dendrogram-based I(X 1; X 2; Y) (mutual information), doublets (gene pairs) and MIC(X 1; X 2; Y) based on the maximal information coefficient. It is unclear whether dendrogram-based I(X 1; X 2; Y) and doublets can capture synergies efficiently. Although MIC(X 1; X 2; Y) can capture a wide range of interaction, it has a high computational cost triggered by its 3-D search. In this paper, we developed a simple and fast approach based on abs conversion type (i.e. Z = |X 1 - X 2|) and t-test, to detect interactions in simulation and real-world datasets. Our results showed that dendrogram-based I(X 1; X 2; Y) and doublets are helpless for discovering pair-wise gene interactions, our approach can discover typical pair-wise synergic genes efficiently. These synergic genes can reach comparable accuracy to the individually discriminant genes using the same number of genes. Classifier cannot learn well if synergic genes have not been converted properly. Combining individually discriminant and synergic genes can improve the prediction performance. More... »

PAGES

16437

References to SciGraph publications

  • 2007-03. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer in NATURE MEDICINE
  • 1998-06. The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate in NATURE GENETICS
  • 2016-12. Weakly supervised learning of biomedical information extraction from curated data in BMC BIOINFORMATICS
  • 2016-11. Discovering Pair-wise Synergies in Microarray Data in SCIENTIFIC REPORTS
  • 2010-06. Genomic subtypes of breast cancer identified by array-comparative genomic hybridization display distinct molecular and clinical characteristics in BREAST CANCER RESEARCH
  • 2016-12. Informative gene selection and the direct classification of tumors based on relative simplicity in BMC BIOINFORMATICS
  • 2008-12. A simple principle concerning the robustness of protein complex activity to changes in gene expression in BMC SYSTEMS BIOLOGY
  • 2010-12. Changes in neuronal activation patterns in response to androgen deprivation therapy: a pilot study in BMC CANCER
  • 2017-12. EFS: an ensemble feature selection tool implemented as R-package and web-application in BIODATA MINING
  • 2015-09. Application of high-dimensional feature selection: evaluation for genomic prediction in man in SCIENTIFIC REPORTS
  • 2009. Over-Expression of CDH22 Is Associated with Tumor Progression in Colorectal Cancer in TUMOR BIOLOGY
  • 2008-12. Identification of gene interactions associated with disease from gene expression data using synergy networks in BMC SYSTEMS BIOLOGY
  • 2006-12. An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors in BMC MEDICAL INFORMATICS AND DECISION MAKING
  • 2010-12. Differential CARM1 expression in prostate and colorectal cancers in BMC CANCER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-017-16748-w

    DOI

    http://dx.doi.org/10.1038/s41598-017-16748-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092869979

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29180805


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hunan Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.257160.7", 
              "name": [
                "Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, 410128, Changsha, Hunan, China", 
                "Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, 410128, Changsha, Hunan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xing", 
            "givenName": "Pengwei", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hunan Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.257160.7", 
              "name": [
                "Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, 410128, Changsha, Hunan, China", 
                "Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, 410128, Changsha, Hunan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Yuan", 
            "id": "sg:person.0641765155.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641765155.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Arkansas for Medical Sciences", 
              "id": "https://www.grid.ac/institutes/grid.241054.6", 
              "name": [
                "Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 72205, Little Rock, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gao", 
            "givenName": "Jun", 
            "id": "sg:person.01161337367.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161337367.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hunan Academy of Agricultural Sciences", 
              "id": "https://www.grid.ac/institutes/grid.410598.1", 
              "name": [
                "Biotechnology Research Center, Hunan Academy of Agricultural Sciences, 410125, Changsha, Hunan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bai", 
            "givenName": "Lianyang", 
            "id": "sg:person.01021600371.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021600371.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hunan Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.257160.7", 
              "name": [
                "Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, 410128, Changsha, Hunan, China", 
                "Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, 410128, Changsha, Hunan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yuan", 
            "givenName": "Zheming", 
            "id": "sg:person.0665443070.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665443070.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.2202/1544-6115.1071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004369313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0014305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005566090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-2-10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007466680", 
              "https://doi.org/10.1186/1752-0509-2-10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1677/erc-06-0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007645759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1677/erc-06-0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007645759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2013/157103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009577157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2407-10-197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009941669", 
              "https://doi.org/10.1186/1471-2407-10-197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep30672", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011212552", 
              "https://doi.org/10.1038/srep30672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1159/000225242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011330769", 
              "https://doi.org/10.1159/000225242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr2596", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011729111", 
              "https://doi.org/10.1186/bcr2596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-016-0893-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012199144", 
              "https://doi.org/10.1186/s12859-016-0893-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1472-6947-6-27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013383409", 
              "https://doi.org/10.1186/1472-6947-6-27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1961189.1961199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013637525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.m701465200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014027072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb4100124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018145311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb4100124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018145311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-015-0844-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018189285", 
              "https://doi.org/10.1186/s12859-015-0844-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-015-0844-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018189285", 
              "https://doi.org/10.1186/s12859-015-0844-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019873855", 
              "https://doi.org/10.1038/514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019873855", 
              "https://doi.org/10.1038/514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0006030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027187973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035021055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-04-2667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035187513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circgenetics.113.000121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037461747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circgenetics.113.000121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037461747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biostatistics/4.2.249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037543114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-07-3094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041045798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/07357900801954210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046076306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm1556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046100853", 
              "https://doi.org/10.1038/nm1556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2407-10-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047981542", 
              "https://doi.org/10.1186/1471-2407-10-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep10312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047984410", 
              "https://doi.org/10.1038/srep10312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/2159-8290.cd-12-0120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049284389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.canlet.2008.10.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049567980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-2-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050880655", 
              "https://doi.org/10.1186/1752-0509-2-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/2159-8274.cd-11-0005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051381906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1055-9965.epi-14-0694-t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052800002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1535-6108(02)00030-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053589488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1538-7445.am2016-778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063270378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3892/ol.2017.5734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083818076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13040-017-0142-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086285517", 
              "https://doi.org/10.1186/s13040-017-0142-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13040-017-0142-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086285517", 
              "https://doi.org/10.1186/s13040-017-0142-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "Selecting informative genes, including individually discriminant genes and synergic genes, from expression data has been useful for medical diagnosis and prognosis. Detecting synergic genes is more difficult than selecting individually discriminant genes. Several efforts have recently been made to detect gene-gene synergies, such as dendrogram-based I(X 1; X 2; Y) (mutual information), doublets (gene pairs) and MIC(X 1; X 2; Y) based on the maximal information coefficient. It is unclear whether dendrogram-based I(X 1; X 2; Y) and doublets can capture synergies efficiently. Although MIC(X 1; X 2; Y) can capture a wide range of interaction, it has a high computational cost triggered by its 3-D search. In this paper, we developed a simple and fast approach based on abs conversion type (i.e. Z\u2009=\u2009|X 1\u2009-\u2009X 2|) and t-test, to detect interactions in simulation and real-world datasets. Our results showed that dendrogram-based I(X 1; X 2; Y) and doublets are helpless for discovering pair-wise gene interactions, our approach can discover typical pair-wise synergic genes efficiently. These synergic genes can reach comparable accuracy to the individually discriminant genes using the same number of genes. Classifier cannot learn well if synergic genes have not been converted properly. Combining individually discriminant and synergic genes can improve the prediction performance.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-017-16748-w", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "A fast approach to detect gene\u2013gene synergy", 
        "pagination": "16437", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "277a1e4506637e3376cb84e064b10a31a32cf9cd4566d620ddde437baac7c58f"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29180805"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-017-16748-w"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092869979"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-017-16748-w", 
          "https://app.dimensions.ai/details/publication/pub.1092869979"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:16", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000493.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-017-16748-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-16748-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-16748-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-16748-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-16748-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    221 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-017-16748-w schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Na552a83e093f419d9d6685eeddecee40
    4 schema:citation sg:pub.10.1038/514
    5 sg:pub.10.1038/nm1556
    6 sg:pub.10.1038/srep10312
    7 sg:pub.10.1038/srep30672
    8 sg:pub.10.1159/000225242
    9 sg:pub.10.1186/1471-2407-10-1
    10 sg:pub.10.1186/1471-2407-10-197
    11 sg:pub.10.1186/1472-6947-6-27
    12 sg:pub.10.1186/1752-0509-2-1
    13 sg:pub.10.1186/1752-0509-2-10
    14 sg:pub.10.1186/bcr2596
    15 sg:pub.10.1186/s12859-015-0844-1
    16 sg:pub.10.1186/s12859-016-0893-0
    17 sg:pub.10.1186/s13040-017-0142-8
    18 https://doi.org/10.1016/j.canlet.2008.10.010
    19 https://doi.org/10.1016/s1535-6108(02)00030-2
    20 https://doi.org/10.1038/msb4100124
    21 https://doi.org/10.1074/jbc.m701465200
    22 https://doi.org/10.1080/07357900801954210
    23 https://doi.org/10.1093/biostatistics/4.2.249
    24 https://doi.org/10.1093/nar/gkt1100
    25 https://doi.org/10.1145/1961189.1961199
    26 https://doi.org/10.1155/2013/157103
    27 https://doi.org/10.1158/0008-5472.can-04-2667
    28 https://doi.org/10.1158/0008-5472.can-07-3094
    29 https://doi.org/10.1158/1055-9965.epi-14-0694-t
    30 https://doi.org/10.1158/1538-7445.am2016-778
    31 https://doi.org/10.1158/2159-8274.cd-11-0005
    32 https://doi.org/10.1158/2159-8290.cd-12-0120
    33 https://doi.org/10.1161/circgenetics.113.000121
    34 https://doi.org/10.1371/journal.pone.0006030
    35 https://doi.org/10.1371/journal.pone.0014305
    36 https://doi.org/10.1677/erc-06-0001
    37 https://doi.org/10.2202/1544-6115.1071
    38 https://doi.org/10.3892/ol.2017.5734
    39 schema:datePublished 2017-12
    40 schema:datePublishedReg 2017-12-01
    41 schema:description Selecting informative genes, including individually discriminant genes and synergic genes, from expression data has been useful for medical diagnosis and prognosis. Detecting synergic genes is more difficult than selecting individually discriminant genes. Several efforts have recently been made to detect gene-gene synergies, such as dendrogram-based I(X <sub>1</sub>; X <sub>2</sub>; Y) (mutual information), doublets (gene pairs) and MIC(X <sub>1</sub>; X <sub>2</sub>; Y) based on the maximal information coefficient. It is unclear whether dendrogram-based I(X <sub>1</sub>; X <sub>2</sub>; Y) and doublets can capture synergies efficiently. Although MIC(X <sub>1</sub>; X <sub>2</sub>; Y) can capture a wide range of interaction, it has a high computational cost triggered by its 3-D search. In this paper, we developed a simple and fast approach based on abs conversion type (i.e. Z = |X <sub>1</sub> - X <sub>2</sub>|) and t-test, to detect interactions in simulation and real-world datasets. Our results showed that dendrogram-based I(X <sub>1</sub>; X <sub>2</sub>; Y) and doublets are helpless for discovering pair-wise gene interactions, our approach can discover typical pair-wise synergic genes efficiently. These synergic genes can reach comparable accuracy to the individually discriminant genes using the same number of genes. Classifier cannot learn well if synergic genes have not been converted properly. Combining individually discriminant and synergic genes can improve the prediction performance.
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree true
    45 schema:isPartOf N08d8cb13ec4548a9a63027342b2edb33
    46 N8a30502b94504050ab601720340821a6
    47 sg:journal.1045337
    48 schema:name A fast approach to detect gene–gene synergy
    49 schema:pagination 16437
    50 schema:productId N01d4fea137e74405b433f3f2a8ac88ca
    51 N635aa4323e79401eb33e69a22b90e13e
    52 N7e6d7d1870c54557a738e3444a051982
    53 N9ad0bc8c753c4e30bcda1517e800465e
    54 Nea7c6df97da14e3eb67afbfd2b7ebb01
    55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092869979
    56 https://doi.org/10.1038/s41598-017-16748-w
    57 schema:sdDatePublished 2019-04-10T18:16
    58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    59 schema:sdPublisher Nbbe7da63d81c4ea697538e0fe5b6c075
    60 schema:url https://www.nature.com/articles/s41598-017-16748-w
    61 sgo:license sg:explorer/license/
    62 sgo:sdDataset articles
    63 rdf:type schema:ScholarlyArticle
    64 N01d4fea137e74405b433f3f2a8ac88ca schema:name doi
    65 schema:value 10.1038/s41598-017-16748-w
    66 rdf:type schema:PropertyValue
    67 N08d8cb13ec4548a9a63027342b2edb33 schema:issueNumber 1
    68 rdf:type schema:PublicationIssue
    69 N45626a1a994d4ee686c43892735100d9 rdf:first sg:person.0641765155.20
    70 rdf:rest Nb6c9743250a14043833e6781ea7576ee
    71 N635aa4323e79401eb33e69a22b90e13e schema:name nlm_unique_id
    72 schema:value 101563288
    73 rdf:type schema:PropertyValue
    74 N7636475210614c4997028092b114ef18 rdf:first sg:person.01021600371.92
    75 rdf:rest Nb6be5f7b08b743cf97d825da40e660b7
    76 N7c61df5a8d364f6bb362a8420b2e6055 schema:affiliation https://www.grid.ac/institutes/grid.257160.7
    77 schema:familyName Xing
    78 schema:givenName Pengwei
    79 rdf:type schema:Person
    80 N7e6d7d1870c54557a738e3444a051982 schema:name readcube_id
    81 schema:value 277a1e4506637e3376cb84e064b10a31a32cf9cd4566d620ddde437baac7c58f
    82 rdf:type schema:PropertyValue
    83 N8a30502b94504050ab601720340821a6 schema:volumeNumber 7
    84 rdf:type schema:PublicationVolume
    85 N9ad0bc8c753c4e30bcda1517e800465e schema:name dimensions_id
    86 schema:value pub.1092869979
    87 rdf:type schema:PropertyValue
    88 Na552a83e093f419d9d6685eeddecee40 rdf:first N7c61df5a8d364f6bb362a8420b2e6055
    89 rdf:rest N45626a1a994d4ee686c43892735100d9
    90 Nb6be5f7b08b743cf97d825da40e660b7 rdf:first sg:person.0665443070.20
    91 rdf:rest rdf:nil
    92 Nb6c9743250a14043833e6781ea7576ee rdf:first sg:person.01161337367.09
    93 rdf:rest N7636475210614c4997028092b114ef18
    94 Nbbe7da63d81c4ea697538e0fe5b6c075 schema:name Springer Nature - SN SciGraph project
    95 rdf:type schema:Organization
    96 Nea7c6df97da14e3eb67afbfd2b7ebb01 schema:name pubmed_id
    97 schema:value 29180805
    98 rdf:type schema:PropertyValue
    99 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Biological Sciences
    101 rdf:type schema:DefinedTerm
    102 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Genetics
    104 rdf:type schema:DefinedTerm
    105 sg:journal.1045337 schema:issn 2045-2322
    106 schema:name Scientific Reports
    107 rdf:type schema:Periodical
    108 sg:person.01021600371.92 schema:affiliation https://www.grid.ac/institutes/grid.410598.1
    109 schema:familyName Bai
    110 schema:givenName Lianyang
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021600371.92
    112 rdf:type schema:Person
    113 sg:person.01161337367.09 schema:affiliation https://www.grid.ac/institutes/grid.241054.6
    114 schema:familyName Gao
    115 schema:givenName Jun
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161337367.09
    117 rdf:type schema:Person
    118 sg:person.0641765155.20 schema:affiliation https://www.grid.ac/institutes/grid.257160.7
    119 schema:familyName Chen
    120 schema:givenName Yuan
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641765155.20
    122 rdf:type schema:Person
    123 sg:person.0665443070.20 schema:affiliation https://www.grid.ac/institutes/grid.257160.7
    124 schema:familyName Yuan
    125 schema:givenName Zheming
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665443070.20
    127 rdf:type schema:Person
    128 sg:pub.10.1038/514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019873855
    129 https://doi.org/10.1038/514
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1038/nm1556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046100853
    132 https://doi.org/10.1038/nm1556
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1038/srep10312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047984410
    135 https://doi.org/10.1038/srep10312
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1038/srep30672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011212552
    138 https://doi.org/10.1038/srep30672
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1159/000225242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011330769
    141 https://doi.org/10.1159/000225242
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1186/1471-2407-10-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047981542
    144 https://doi.org/10.1186/1471-2407-10-1
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1186/1471-2407-10-197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009941669
    147 https://doi.org/10.1186/1471-2407-10-197
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1186/1472-6947-6-27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013383409
    150 https://doi.org/10.1186/1472-6947-6-27
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1186/1752-0509-2-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050880655
    153 https://doi.org/10.1186/1752-0509-2-1
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1186/1752-0509-2-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007466680
    156 https://doi.org/10.1186/1752-0509-2-10
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1186/bcr2596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011729111
    159 https://doi.org/10.1186/bcr2596
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1186/s12859-015-0844-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018189285
    162 https://doi.org/10.1186/s12859-015-0844-1
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1186/s12859-016-0893-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012199144
    165 https://doi.org/10.1186/s12859-016-0893-0
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1186/s13040-017-0142-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086285517
    168 https://doi.org/10.1186/s13040-017-0142-8
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.canlet.2008.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049567980
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/s1535-6108(02)00030-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053589488
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1038/msb4100124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018145311
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1074/jbc.m701465200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014027072
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1080/07357900801954210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046076306
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1093/biostatistics/4.2.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037543114
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1093/nar/gkt1100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035021055
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1145/1961189.1961199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637525
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1155/2013/157103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009577157
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1158/0008-5472.can-04-2667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035187513
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1158/0008-5472.can-07-3094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041045798
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1158/1055-9965.epi-14-0694-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1052800002
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1158/1538-7445.am2016-778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063270378
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1158/2159-8274.cd-11-0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051381906
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1158/2159-8290.cd-12-0120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049284389
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1161/circgenetics.113.000121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037461747
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1371/journal.pone.0006030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027187973
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1371/journal.pone.0014305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005566090
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1677/erc-06-0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007645759
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.2202/1544-6115.1071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004369313
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.3892/ol.2017.5734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083818076
    211 rdf:type schema:CreativeWork
    212 https://www.grid.ac/institutes/grid.241054.6 schema:alternateName University of Arkansas for Medical Sciences
    213 schema:name Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 72205, Little Rock, USA
    214 rdf:type schema:Organization
    215 https://www.grid.ac/institutes/grid.257160.7 schema:alternateName Hunan Agricultural University
    216 schema:name Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, 410128, Changsha, Hunan, China
    217 Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, 410128, Changsha, Hunan, China
    218 rdf:type schema:Organization
    219 https://www.grid.ac/institutes/grid.410598.1 schema:alternateName Hunan Academy of Agricultural Sciences
    220 schema:name Biotechnology Research Center, Hunan Academy of Agricultural Sciences, 410125, Changsha, Hunan, China
    221 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...