Generating Localized Plasmonic Fields on an Integrated Photonic Platform using Tapered Couplers for Biosensing Applications View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Gurpreet Singh, Renzhe Bi, U. S. Dinish, Malini Olivo

ABSTRACT

A theoretical design and analysis of a tapered-coupler structure on a silicon nitride integrated-photonic platform for coupling optical energy from a dielectric waveguide to a plasmonic tip is presented. The proposed design can be considered as a hybrid photonic-plasmonic structure that generally supports hybrid symmetric and asymmetric modes. Along the taper, one of the hybrid modes approaches the cut-off, while the other approaches the short-range surface plasmon mode that generates localized fields. Potential use of the proposed novel tapered-coupler plasmonic structure for highly sensitive biosensing applications using surface enhanced Raman scattering (SERS) and metal enhanced fluorescence (MEF) techniques is discussed. For SERS, a theoretical electromagnetic enhancement factor as high as 1.23 × 106 is deduced for taper tip widths as small as 20 nm. The proposed tapered-coupler sets up interesting possibilities towards moving to an all-integrated on-chip SERS and MEF based bio-sensor platform - away from traditional free-space based illumination strategies. More... »

PAGES

15587

Journal

TITLE

Scientific Reports

ISSUE

1

VOLUME

7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-15675-0

DOI

http://dx.doi.org/10.1038/s41598-017-15675-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092599605

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29138434


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Singapore Bioimaging Consortium", 
          "id": "https://www.grid.ac/institutes/grid.452254.0", 
          "name": [
            "Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Gurpreet", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Singapore Bioimaging Consortium", 
          "id": "https://www.grid.ac/institutes/grid.452254.0", 
          "name": [
            "Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bi", 
        "givenName": "Renzhe", 
        "id": "sg:person.0766525471.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766525471.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Singapore Bioimaging Consortium", 
          "id": "https://www.grid.ac/institutes/grid.452254.0", 
          "name": [
            "Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dinish", 
        "givenName": "U. S.", 
        "id": "sg:person.0665164325.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665164325.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Singapore Bioimaging Consortium", 
          "id": "https://www.grid.ac/institutes/grid.452254.0", 
          "name": [
            "Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olivo", 
        "givenName": "Malini", 
        "id": "sg:person.01245257507.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245257507.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphoton.2013.183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006235221", 
          "https://doi.org/10.1038/nphoton.2013.183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007245986", 
          "https://doi.org/10.1038/nmat2162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.14.001957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009296366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbio.201100047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012022751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10895-011-0996-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012755692", 
          "https://doi.org/10.1007/s10895-011-0996-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268979300102851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016031985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/prj.3.000b47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019617123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1025046101335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021449437", 
          "https://doi.org/10.1023/a:1025046101335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016875709579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026649437", 
          "https://doi.org/10.1023/a:1016875709579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029876312", 
          "https://doi.org/10.1038/nature01937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029876312", 
          "https://doi.org/10.1038/nature01937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2006.93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032246525", 
          "https://doi.org/10.1038/nnano.2006.93"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2006.93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032246525", 
          "https://doi.org/10.1038/nnano.2006.93"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2015.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033003745", 
          "https://doi.org/10.1038/nphoton.2015.127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/natrevmats.2016.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034288189", 
          "https://doi.org/10.1038/natrevmats.2016.21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep25037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036187555", 
          "https://doi.org/10.1038/srep25037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/bbrc.2001.5445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040883897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2009.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044296409", 
          "https://doi.org/10.1038/nphoton.2009.26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2009.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044296409", 
          "https://doi.org/10.1038/nphoton.2009.26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201404341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048788573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac9712310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055074529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac9712310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055074529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsphotonics.5b00487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055138800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl503409k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl901112h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl901112h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.5186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.5186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.6.4370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.6.4370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jlt.2014.2335741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061287761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/aop.1.000484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065137130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/aop.1.000484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065137130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.002797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065189703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.013173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065193832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.013173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065193832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.016546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065194212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.012865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065197112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.001898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065202583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2250859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084715295"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "A theoretical design and analysis of a tapered-coupler structure on a silicon nitride integrated-photonic platform for coupling optical energy from a dielectric waveguide to a plasmonic tip is presented. The proposed design can be considered as a hybrid photonic-plasmonic structure that generally supports hybrid symmetric and asymmetric modes. Along the taper, one of the hybrid modes approaches the cut-off, while the other approaches the short-range surface plasmon mode that generates localized fields. Potential use of the proposed novel tapered-coupler plasmonic structure for highly sensitive biosensing applications using surface enhanced Raman scattering (SERS) and metal enhanced fluorescence (MEF) techniques is discussed. For SERS, a theoretical electromagnetic enhancement factor as high as 1.23\u2009\u00d7\u2009106 is deduced for taper tip widths as small as 20\u2009nm. The proposed tapered-coupler sets up interesting possibilities towards moving to an all-integrated on-chip SERS and MEF based bio-sensor platform - away from traditional free-space based illumination strategies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-15675-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Generating Localized Plasmonic Fields on an Integrated Photonic Platform using Tapered Couplers for Biosensing Applications", 
    "pagination": "15587", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "abfb09aac37ddb734c1da01f5831a039ff311c3216163638d1114e89e0e45e69"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29138434"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-15675-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092599605"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-15675-0", 
      "https://app.dimensions.ai/details/publication/pub.1092599605"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-15675-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-15675-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-15675-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-15675-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-15675-0'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-15675-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nefcc2858906448ac93b927a68dfb6940
4 schema:citation sg:pub.10.1007/s10895-011-0996-y
5 sg:pub.10.1023/a:1016875709579
6 sg:pub.10.1023/a:1025046101335
7 sg:pub.10.1038/natrevmats.2016.21
8 sg:pub.10.1038/nature01937
9 sg:pub.10.1038/nmat2162
10 sg:pub.10.1038/nnano.2006.93
11 sg:pub.10.1038/nphoton.2009.26
12 sg:pub.10.1038/nphoton.2013.183
13 sg:pub.10.1038/nphoton.2015.127
14 sg:pub.10.1038/srep25037
15 https://doi.org/10.1002/adfm.201404341
16 https://doi.org/10.1002/jbio.201100047
17 https://doi.org/10.1006/bbrc.2001.5445
18 https://doi.org/10.1021/ac9712310
19 https://doi.org/10.1021/acsphotonics.5b00487
20 https://doi.org/10.1021/nl503409k
21 https://doi.org/10.1021/nl901112h
22 https://doi.org/10.1080/00268979300102851
23 https://doi.org/10.1103/physrevb.33.5186
24 https://doi.org/10.1103/physrevb.6.4370
25 https://doi.org/10.1109/jlt.2014.2335741
26 https://doi.org/10.1117/12.2250859
27 https://doi.org/10.1364/aop.1.000484
28 https://doi.org/10.1364/oe.14.001957
29 https://doi.org/10.1364/oe.17.002797
30 https://doi.org/10.1364/oe.18.013173
31 https://doi.org/10.1364/oe.18.016546
32 https://doi.org/10.1364/oe.19.012865
33 https://doi.org/10.1364/oe.21.001898
34 https://doi.org/10.1364/prj.3.000b47
35 schema:datePublished 2017-12
36 schema:datePublishedReg 2017-12-01
37 schema:description A theoretical design and analysis of a tapered-coupler structure on a silicon nitride integrated-photonic platform for coupling optical energy from a dielectric waveguide to a plasmonic tip is presented. The proposed design can be considered as a hybrid photonic-plasmonic structure that generally supports hybrid symmetric and asymmetric modes. Along the taper, one of the hybrid modes approaches the cut-off, while the other approaches the short-range surface plasmon mode that generates localized fields. Potential use of the proposed novel tapered-coupler plasmonic structure for highly sensitive biosensing applications using surface enhanced Raman scattering (SERS) and metal enhanced fluorescence (MEF) techniques is discussed. For SERS, a theoretical electromagnetic enhancement factor as high as 1.23 × 10<sup>6</sup> is deduced for taper tip widths as small as 20 nm. The proposed tapered-coupler sets up interesting possibilities towards moving to an all-integrated on-chip SERS and MEF based bio-sensor platform - away from traditional free-space based illumination strategies.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf Ne25c6043da4f4573948178d84b878ddc
42 Neef7b468565e40128865902a52c676ff
43 sg:journal.1045337
44 schema:name Generating Localized Plasmonic Fields on an Integrated Photonic Platform using Tapered Couplers for Biosensing Applications
45 schema:pagination 15587
46 schema:productId N02c0925a9a0f4a8987819b13c65039b7
47 N546825bb29d84818b3ac457a6f7cdb41
48 N68e6beee73c24c5c814fde1beaad843a
49 N91c4b7132b2e4b868d2c60d30a70d274
50 Nff305bab90ea4314bc9c409085550baa
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092599605
52 https://doi.org/10.1038/s41598-017-15675-0
53 schema:sdDatePublished 2019-04-10T19:04
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nb7c26b03f4a64c1d9c0f55b60a8090ee
56 schema:url https://www.nature.com/articles/s41598-017-15675-0
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N02c0925a9a0f4a8987819b13c65039b7 schema:name doi
61 schema:value 10.1038/s41598-017-15675-0
62 rdf:type schema:PropertyValue
63 N3cacdab270074061b1418177816d59b6 rdf:first sg:person.0766525471.82
64 rdf:rest Neca50f90cb784a70b054eb65ad49cf3f
65 N4060540b4b484d499516946334ff9471 schema:affiliation https://www.grid.ac/institutes/grid.452254.0
66 schema:familyName Singh
67 schema:givenName Gurpreet
68 rdf:type schema:Person
69 N546825bb29d84818b3ac457a6f7cdb41 schema:name readcube_id
70 schema:value abfb09aac37ddb734c1da01f5831a039ff311c3216163638d1114e89e0e45e69
71 rdf:type schema:PropertyValue
72 N68e6beee73c24c5c814fde1beaad843a schema:name dimensions_id
73 schema:value pub.1092599605
74 rdf:type schema:PropertyValue
75 N91c4b7132b2e4b868d2c60d30a70d274 schema:name nlm_unique_id
76 schema:value 101563288
77 rdf:type schema:PropertyValue
78 Nb7c26b03f4a64c1d9c0f55b60a8090ee schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Ne25c6043da4f4573948178d84b878ddc schema:volumeNumber 7
81 rdf:type schema:PublicationVolume
82 Nead76ab6f386446d8e8fda25aab153ea rdf:first sg:person.01245257507.10
83 rdf:rest rdf:nil
84 Neca50f90cb784a70b054eb65ad49cf3f rdf:first sg:person.0665164325.50
85 rdf:rest Nead76ab6f386446d8e8fda25aab153ea
86 Neef7b468565e40128865902a52c676ff schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 Nefcc2858906448ac93b927a68dfb6940 rdf:first N4060540b4b484d499516946334ff9471
89 rdf:rest N3cacdab270074061b1418177816d59b6
90 Nff305bab90ea4314bc9c409085550baa schema:name pubmed_id
91 schema:value 29138434
92 rdf:type schema:PropertyValue
93 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
94 schema:name Engineering
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
97 schema:name Materials Engineering
98 rdf:type schema:DefinedTerm
99 sg:journal.1045337 schema:issn 2045-2322
100 schema:name Scientific Reports
101 rdf:type schema:Periodical
102 sg:person.01245257507.10 schema:affiliation https://www.grid.ac/institutes/grid.452254.0
103 schema:familyName Olivo
104 schema:givenName Malini
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245257507.10
106 rdf:type schema:Person
107 sg:person.0665164325.50 schema:affiliation https://www.grid.ac/institutes/grid.452254.0
108 schema:familyName Dinish
109 schema:givenName U. S.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665164325.50
111 rdf:type schema:Person
112 sg:person.0766525471.82 schema:affiliation https://www.grid.ac/institutes/grid.452254.0
113 schema:familyName Bi
114 schema:givenName Renzhe
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766525471.82
116 rdf:type schema:Person
117 sg:pub.10.1007/s10895-011-0996-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012755692
118 https://doi.org/10.1007/s10895-011-0996-y
119 rdf:type schema:CreativeWork
120 sg:pub.10.1023/a:1016875709579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026649437
121 https://doi.org/10.1023/a:1016875709579
122 rdf:type schema:CreativeWork
123 sg:pub.10.1023/a:1025046101335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021449437
124 https://doi.org/10.1023/a:1025046101335
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/natrevmats.2016.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034288189
127 https://doi.org/10.1038/natrevmats.2016.21
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nature01937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029876312
130 https://doi.org/10.1038/nature01937
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nmat2162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007245986
133 https://doi.org/10.1038/nmat2162
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nnano.2006.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032246525
136 https://doi.org/10.1038/nnano.2006.93
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nphoton.2009.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044296409
139 https://doi.org/10.1038/nphoton.2009.26
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nphoton.2013.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006235221
142 https://doi.org/10.1038/nphoton.2013.183
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nphoton.2015.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033003745
145 https://doi.org/10.1038/nphoton.2015.127
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/srep25037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036187555
148 https://doi.org/10.1038/srep25037
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/adfm.201404341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048788573
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/jbio.201100047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012022751
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1006/bbrc.2001.5445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040883897
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/ac9712310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055074529
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1021/acsphotonics.5b00487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055138800
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/nl503409k schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221031
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/nl901112h schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221929
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1080/00268979300102851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016031985
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevb.33.5186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060539857
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevb.6.4370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060592879
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/jlt.2014.2335741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061287761
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1117/12.2250859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084715295
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1364/aop.1.000484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065137130
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1364/oe.14.001957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009296366
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1364/oe.17.002797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065189703
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1364/oe.18.013173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065193832
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1364/oe.18.016546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065194212
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1364/oe.19.012865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065197112
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1364/oe.21.001898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065202583
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1364/prj.3.000b47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019617123
189 rdf:type schema:CreativeWork
190 https://www.grid.ac/institutes/grid.452254.0 schema:alternateName Singapore Bioimaging Consortium
191 schema:name Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...