Impact of analytical and biological variations on classification of diabetes using fasting plasma glucose, oral glucose tolerance test and HbA1c View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Jia Hui Chai, Stefan Ma, Derick Heng, Joanne Yoong, Wei-Yen Lim, Sue-Anne Toh, Tze Ping Loh

ABSTRACT

Historically, diabetes is diagnosed by measuring fasting (FPG) and two-hour post oral glucose load (OGTT) plasma concentration and interpreting it against recommended clinical thresholds of the patient. More recently, glycated haemoglobin A1c (HbA1c) has been included as a diagnostic criterion. Within-individual biological variation (CVi), analytical variation (CVa) and analytical bias of a test can impact on the accuracy and reproducibility of the classification of a disease. A test with large biological and analytical variation increases the likelihood of erroneous classification of the underlying disease state of a patient. Through numerical simulations based on the laboratory results generated from a large population health survey, we examined the impact of CVi, CVa and bias on the classification of diabetes using fasting plasma glucose (FPG), oral glucose tolerance test (OGTT) and HbA1c. From the results of the simulations, HbA1c has comparable performance to FPG and is better than OGTT in classifying subjects with diabetes, particularly when laboratory methods with smaller CVa are used. The use of the average of the results of the repeat laboratory tests has the effect of ameliorating the combined (analytical and biological) variation. The averaged result improves the consistency of the disease classification. More... »

PAGES

13721

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-14172-8

DOI

http://dx.doi.org/10.1038/s41598-017-14172-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092252323

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29057963


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chai", 
        "givenName": "Jia Hui", 
        "id": "sg:person.013665042413.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013665042413.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ministry of Health", 
          "id": "https://www.grid.ac/institutes/grid.415698.7", 
          "name": [
            "Epidemiology & Disease Control Division, Ministry of Health, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Stefan", 
        "id": "sg:person.01244625416.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244625416.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ministry of Health", 
          "id": "https://www.grid.ac/institutes/grid.415698.7", 
          "name": [
            "Public Health Group, Ministry of Health, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heng", 
        "givenName": "Derick", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoong", 
        "givenName": "Joanne", 
        "id": "sg:person.01025364073.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025364073.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agency for Integrated Care", 
          "id": "https://www.grid.ac/institutes/grid.490624.d", 
          "name": [
            "Research and Development Office, Agency for Integrated Care, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Wei-Yen", 
        "id": "sg:person.01013433637.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013433637.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412106.0", 
          "name": [
            "Department of Medicine, National University Hospital, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toh", 
        "givenName": "Sue-Anne", 
        "id": "sg:person.0720672616.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720672616.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department Laboratory Medicine, National University Hospital, Singapore, Singapore", 
            "Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Loh", 
        "givenName": "Tze Ping", 
        "id": "sg:person.01145636767.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145636767.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2337/dc11-9997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013977232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/10408368909106595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014263370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc16-s001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014766819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0162102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024623492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/bmm.12.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026904496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc10-1546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032208135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc16-er09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043191276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00365519950185229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049431624"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Historically, diabetes is diagnosed by measuring fasting (FPG) and two-hour post oral glucose load (OGTT) plasma concentration and interpreting it against recommended clinical thresholds of the patient. More recently, glycated haemoglobin A1c (HbA1c) has been included as a diagnostic criterion. Within-individual biological variation (CVi), analytical variation (CVa) and analytical bias of a test can impact on the accuracy and reproducibility of the classification of a disease. A test with large biological and analytical variation increases the likelihood of erroneous classification of the underlying disease state of a patient. Through numerical simulations based on the laboratory results generated from a large population health survey, we examined the impact of CVi, CVa and bias on the classification of diabetes using fasting plasma glucose (FPG), oral glucose tolerance test (OGTT) and HbA1c. From the results of the simulations, HbA1c has comparable performance to FPG and is better than OGTT in classifying subjects with diabetes, particularly when laboratory methods with smaller CVa are used. The use of the average of the results of the repeat laboratory tests has the effect of ameliorating the combined (analytical and biological) variation. The averaged result improves the consistency of the disease classification.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-14172-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Impact of analytical and biological variations on classification of diabetes using fasting plasma glucose, oral glucose tolerance test and HbA1c", 
    "pagination": "13721", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "874257f7436dfafd39872b457f97e57466622b4a0f5dbd3c5d06e1103d3c5609"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29057963"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-14172-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092252323"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-14172-8", 
      "https://app.dimensions.ai/details/publication/pub.1092252323"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000566.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-14172-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-14172-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-14172-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-14172-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-14172-8'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      37 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-14172-8 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N608c15f2ac3d4011aef94b4414fe384f
4 schema:citation https://doi.org/10.1080/00365519950185229
5 https://doi.org/10.1371/journal.pone.0162102
6 https://doi.org/10.2217/bmm.12.57
7 https://doi.org/10.2337/dc10-1546
8 https://doi.org/10.2337/dc11-9997
9 https://doi.org/10.2337/dc16-er09
10 https://doi.org/10.2337/dc16-s001
11 https://doi.org/10.3109/10408368909106595
12 schema:datePublished 2017-12
13 schema:datePublishedReg 2017-12-01
14 schema:description Historically, diabetes is diagnosed by measuring fasting (FPG) and two-hour post oral glucose load (OGTT) plasma concentration and interpreting it against recommended clinical thresholds of the patient. More recently, glycated haemoglobin A1c (HbA1c) has been included as a diagnostic criterion. Within-individual biological variation (CVi), analytical variation (CVa) and analytical bias of a test can impact on the accuracy and reproducibility of the classification of a disease. A test with large biological and analytical variation increases the likelihood of erroneous classification of the underlying disease state of a patient. Through numerical simulations based on the laboratory results generated from a large population health survey, we examined the impact of CVi, CVa and bias on the classification of diabetes using fasting plasma glucose (FPG), oral glucose tolerance test (OGTT) and HbA1c. From the results of the simulations, HbA1c has comparable performance to FPG and is better than OGTT in classifying subjects with diabetes, particularly when laboratory methods with smaller CVa are used. The use of the average of the results of the repeat laboratory tests has the effect of ameliorating the combined (analytical and biological) variation. The averaged result improves the consistency of the disease classification.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N04d563976fc4433c9af33149a806a121
19 Nfb8e7f07bdec49568e6394f2ada89839
20 sg:journal.1045337
21 schema:name Impact of analytical and biological variations on classification of diabetes using fasting plasma glucose, oral glucose tolerance test and HbA1c
22 schema:pagination 13721
23 schema:productId N6d0f1e07ba864f15a820a66bccb8d074
24 N6dec57e24c5d4ac49b1219e24777eb21
25 Na7bc5bb5cc7946d7bbe3d112d07d0270
26 Nc0fc0563a5db44219f14547931581c01
27 Ne525a1fb04de46c5ac79b37513b48fcd
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092252323
29 https://doi.org/10.1038/s41598-017-14172-8
30 schema:sdDatePublished 2019-04-11T00:25
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N2d06620b0357439b8077adf4ff56716b
33 schema:url https://www.nature.com/articles/s41598-017-14172-8
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N04d563976fc4433c9af33149a806a121 schema:issueNumber 1
38 rdf:type schema:PublicationIssue
39 N0787b83726f642738dac8d23107f9fa5 rdf:first sg:person.01244625416.94
40 rdf:rest N5e43d56e57264f65ae249a4fdccb247e
41 N07c8d77b95324ffcba9a73887425f466 rdf:first sg:person.01145636767.72
42 rdf:rest rdf:nil
43 N2d06620b0357439b8077adf4ff56716b schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N464c2c6f429a495ba98ac141bf4f6b86 schema:affiliation https://www.grid.ac/institutes/grid.415698.7
46 schema:familyName Heng
47 schema:givenName Derick
48 rdf:type schema:Person
49 N532e15d21e9041dbb8a01ae1a4e0bc76 rdf:first sg:person.01025364073.65
50 rdf:rest Ne48e2f0c99ee4ce6a41d072bc74d6d28
51 N5e43d56e57264f65ae249a4fdccb247e rdf:first N464c2c6f429a495ba98ac141bf4f6b86
52 rdf:rest N532e15d21e9041dbb8a01ae1a4e0bc76
53 N608c15f2ac3d4011aef94b4414fe384f rdf:first sg:person.013665042413.62
54 rdf:rest N0787b83726f642738dac8d23107f9fa5
55 N6d0f1e07ba864f15a820a66bccb8d074 schema:name nlm_unique_id
56 schema:value 101563288
57 rdf:type schema:PropertyValue
58 N6dec57e24c5d4ac49b1219e24777eb21 schema:name readcube_id
59 schema:value 874257f7436dfafd39872b457f97e57466622b4a0f5dbd3c5d06e1103d3c5609
60 rdf:type schema:PropertyValue
61 Na7bc5bb5cc7946d7bbe3d112d07d0270 schema:name doi
62 schema:value 10.1038/s41598-017-14172-8
63 rdf:type schema:PropertyValue
64 Nc0fc0563a5db44219f14547931581c01 schema:name dimensions_id
65 schema:value pub.1092252323
66 rdf:type schema:PropertyValue
67 Ne48e2f0c99ee4ce6a41d072bc74d6d28 rdf:first sg:person.01013433637.16
68 rdf:rest Nf0999fdc66914e9b8bf57a1b328098f7
69 Ne525a1fb04de46c5ac79b37513b48fcd schema:name pubmed_id
70 schema:value 29057963
71 rdf:type schema:PropertyValue
72 Nf0999fdc66914e9b8bf57a1b328098f7 rdf:first sg:person.0720672616.11
73 rdf:rest N07c8d77b95324ffcba9a73887425f466
74 Nfb8e7f07bdec49568e6394f2ada89839 schema:volumeNumber 7
75 rdf:type schema:PublicationVolume
76 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
77 schema:name Medical and Health Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
80 schema:name Clinical Sciences
81 rdf:type schema:DefinedTerm
82 sg:journal.1045337 schema:issn 2045-2322
83 schema:name Scientific Reports
84 rdf:type schema:Periodical
85 sg:person.01013433637.16 schema:affiliation https://www.grid.ac/institutes/grid.490624.d
86 schema:familyName Lim
87 schema:givenName Wei-Yen
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013433637.16
89 rdf:type schema:Person
90 sg:person.01025364073.65 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
91 schema:familyName Yoong
92 schema:givenName Joanne
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025364073.65
94 rdf:type schema:Person
95 sg:person.01145636767.72 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
96 schema:familyName Loh
97 schema:givenName Tze Ping
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145636767.72
99 rdf:type schema:Person
100 sg:person.01244625416.94 schema:affiliation https://www.grid.ac/institutes/grid.415698.7
101 schema:familyName Ma
102 schema:givenName Stefan
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244625416.94
104 rdf:type schema:Person
105 sg:person.013665042413.62 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
106 schema:familyName Chai
107 schema:givenName Jia Hui
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013665042413.62
109 rdf:type schema:Person
110 sg:person.0720672616.11 schema:affiliation https://www.grid.ac/institutes/grid.412106.0
111 schema:familyName Toh
112 schema:givenName Sue-Anne
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720672616.11
114 rdf:type schema:Person
115 https://doi.org/10.1080/00365519950185229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049431624
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1371/journal.pone.0162102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024623492
118 rdf:type schema:CreativeWork
119 https://doi.org/10.2217/bmm.12.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026904496
120 rdf:type schema:CreativeWork
121 https://doi.org/10.2337/dc10-1546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032208135
122 rdf:type schema:CreativeWork
123 https://doi.org/10.2337/dc11-9997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013977232
124 rdf:type schema:CreativeWork
125 https://doi.org/10.2337/dc16-er09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043191276
126 rdf:type schema:CreativeWork
127 https://doi.org/10.2337/dc16-s001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014766819
128 rdf:type schema:CreativeWork
129 https://doi.org/10.3109/10408368909106595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014263370
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.412106.0 schema:alternateName National University Hospital
132 schema:name Department of Medicine, National University Hospital, Singapore, Singapore
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.415698.7 schema:alternateName Ministry of Health
135 schema:name Epidemiology & Disease Control Division, Ministry of Health, Singapore, Singapore
136 Public Health Group, Ministry of Health, Singapore, Singapore
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
139 schema:name Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore, Singapore
140 Department Laboratory Medicine, National University Hospital, Singapore, Singapore
141 Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
142 rdf:type schema:Organization
143 https://www.grid.ac/institutes/grid.490624.d schema:alternateName Agency for Integrated Care
144 schema:name Research and Development Office, Agency for Integrated Care, Singapore, Singapore
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...