Impact of analytical and biological variations on classification of diabetes using fasting plasma glucose, oral glucose tolerance test and HbA1c View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Jia Hui Chai, Stefan Ma, Derick Heng, Joanne Yoong, Wei-Yen Lim, Sue-Anne Toh, Tze Ping Loh

ABSTRACT

Historically, diabetes is diagnosed by measuring fasting (FPG) and two-hour post oral glucose load (OGTT) plasma concentration and interpreting it against recommended clinical thresholds of the patient. More recently, glycated haemoglobin A1c (HbA1c) has been included as a diagnostic criterion. Within-individual biological variation (CVi), analytical variation (CVa) and analytical bias of a test can impact on the accuracy and reproducibility of the classification of a disease. A test with large biological and analytical variation increases the likelihood of erroneous classification of the underlying disease state of a patient. Through numerical simulations based on the laboratory results generated from a large population health survey, we examined the impact of CVi, CVa and bias on the classification of diabetes using fasting plasma glucose (FPG), oral glucose tolerance test (OGTT) and HbA1c. From the results of the simulations, HbA1c has comparable performance to FPG and is better than OGTT in classifying subjects with diabetes, particularly when laboratory methods with smaller CVa are used. The use of the average of the results of the repeat laboratory tests has the effect of ameliorating the combined (analytical and biological) variation. The averaged result improves the consistency of the disease classification. More... »

PAGES

13721

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-14172-8

DOI

http://dx.doi.org/10.1038/s41598-017-14172-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092252323

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29057963


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chai", 
        "givenName": "Jia Hui", 
        "id": "sg:person.013665042413.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013665042413.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ministry of Health", 
          "id": "https://www.grid.ac/institutes/grid.415698.7", 
          "name": [
            "Epidemiology & Disease Control Division, Ministry of Health, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Stefan", 
        "id": "sg:person.01244625416.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244625416.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ministry of Health", 
          "id": "https://www.grid.ac/institutes/grid.415698.7", 
          "name": [
            "Public Health Group, Ministry of Health, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heng", 
        "givenName": "Derick", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoong", 
        "givenName": "Joanne", 
        "id": "sg:person.01025364073.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025364073.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agency for Integrated Care", 
          "id": "https://www.grid.ac/institutes/grid.490624.d", 
          "name": [
            "Research and Development Office, Agency for Integrated Care, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Wei-Yen", 
        "id": "sg:person.01013433637.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013433637.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412106.0", 
          "name": [
            "Department of Medicine, National University Hospital, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toh", 
        "givenName": "Sue-Anne", 
        "id": "sg:person.0720672616.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720672616.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department Laboratory Medicine, National University Hospital, Singapore, Singapore", 
            "Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Loh", 
        "givenName": "Tze Ping", 
        "id": "sg:person.01145636767.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145636767.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2337/dc11-9997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013977232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/10408368909106595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014263370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc16-s001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014766819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0162102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024623492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/bmm.12.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026904496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc10-1546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032208135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc16-er09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043191276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00365519950185229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049431624"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Historically, diabetes is diagnosed by measuring fasting (FPG) and two-hour post oral glucose load (OGTT) plasma concentration and interpreting it against recommended clinical thresholds of the patient. More recently, glycated haemoglobin A1c (HbA1c) has been included as a diagnostic criterion. Within-individual biological variation (CVi), analytical variation (CVa) and analytical bias of a test can impact on the accuracy and reproducibility of the classification of a disease. A test with large biological and analytical variation increases the likelihood of erroneous classification of the underlying disease state of a patient. Through numerical simulations based on the laboratory results generated from a large population health survey, we examined the impact of CVi, CVa and bias on the classification of diabetes using fasting plasma glucose (FPG), oral glucose tolerance test (OGTT) and HbA1c. From the results of the simulations, HbA1c has comparable performance to FPG and is better than OGTT in classifying subjects with diabetes, particularly when laboratory methods with smaller CVa are used. The use of the average of the results of the repeat laboratory tests has the effect of ameliorating the combined (analytical and biological) variation. The averaged result improves the consistency of the disease classification.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-14172-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Impact of analytical and biological variations on classification of diabetes using fasting plasma glucose, oral glucose tolerance test and HbA1c", 
    "pagination": "13721", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "874257f7436dfafd39872b457f97e57466622b4a0f5dbd3c5d06e1103d3c5609"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29057963"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-14172-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092252323"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-14172-8", 
      "https://app.dimensions.ai/details/publication/pub.1092252323"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000566.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-14172-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-14172-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-14172-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-14172-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-14172-8'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      37 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-14172-8 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N8e601381cad240ff8ace173b7bc4a337
4 schema:citation https://doi.org/10.1080/00365519950185229
5 https://doi.org/10.1371/journal.pone.0162102
6 https://doi.org/10.2217/bmm.12.57
7 https://doi.org/10.2337/dc10-1546
8 https://doi.org/10.2337/dc11-9997
9 https://doi.org/10.2337/dc16-er09
10 https://doi.org/10.2337/dc16-s001
11 https://doi.org/10.3109/10408368909106595
12 schema:datePublished 2017-12
13 schema:datePublishedReg 2017-12-01
14 schema:description Historically, diabetes is diagnosed by measuring fasting (FPG) and two-hour post oral glucose load (OGTT) plasma concentration and interpreting it against recommended clinical thresholds of the patient. More recently, glycated haemoglobin A1c (HbA1c) has been included as a diagnostic criterion. Within-individual biological variation (CVi), analytical variation (CVa) and analytical bias of a test can impact on the accuracy and reproducibility of the classification of a disease. A test with large biological and analytical variation increases the likelihood of erroneous classification of the underlying disease state of a patient. Through numerical simulations based on the laboratory results generated from a large population health survey, we examined the impact of CVi, CVa and bias on the classification of diabetes using fasting plasma glucose (FPG), oral glucose tolerance test (OGTT) and HbA1c. From the results of the simulations, HbA1c has comparable performance to FPG and is better than OGTT in classifying subjects with diabetes, particularly when laboratory methods with smaller CVa are used. The use of the average of the results of the repeat laboratory tests has the effect of ameliorating the combined (analytical and biological) variation. The averaged result improves the consistency of the disease classification.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N0f09871dcca6429f93c570ce65721a6f
19 Nf440ec446ebe468f94b580b18d8b1c89
20 sg:journal.1045337
21 schema:name Impact of analytical and biological variations on classification of diabetes using fasting plasma glucose, oral glucose tolerance test and HbA1c
22 schema:pagination 13721
23 schema:productId N0208f26e308941f88c4b11a33d4ce138
24 N023471f021c441df830335fa632b2319
25 N79950a8ffd3740a8bdf78d0375630903
26 N9682c576e9af462ca9ec846d5e9d8c00
27 Nec731bc5dd0045c5929ef3aa6f8e6750
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092252323
29 https://doi.org/10.1038/s41598-017-14172-8
30 schema:sdDatePublished 2019-04-11T00:25
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N2f155050fae14cf0a91b451df840b64e
33 schema:url https://www.nature.com/articles/s41598-017-14172-8
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0208f26e308941f88c4b11a33d4ce138 schema:name readcube_id
38 schema:value 874257f7436dfafd39872b457f97e57466622b4a0f5dbd3c5d06e1103d3c5609
39 rdf:type schema:PropertyValue
40 N023471f021c441df830335fa632b2319 schema:name dimensions_id
41 schema:value pub.1092252323
42 rdf:type schema:PropertyValue
43 N0f09871dcca6429f93c570ce65721a6f schema:issueNumber 1
44 rdf:type schema:PublicationIssue
45 N15fe22dcc40c4cb989f74d6a797c655d rdf:first sg:person.0720672616.11
46 rdf:rest N8596076f14b342aeab3244c04ffccd19
47 N2f155050fae14cf0a91b451df840b64e schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N79950a8ffd3740a8bdf78d0375630903 schema:name doi
50 schema:value 10.1038/s41598-017-14172-8
51 rdf:type schema:PropertyValue
52 N81e500b0048f4a798602767978cf8b87 rdf:first sg:person.01025364073.65
53 rdf:rest Nf9d27008b8384d2691a1d34388b65139
54 N8596076f14b342aeab3244c04ffccd19 rdf:first sg:person.01145636767.72
55 rdf:rest rdf:nil
56 N8e601381cad240ff8ace173b7bc4a337 rdf:first sg:person.013665042413.62
57 rdf:rest N9a903142f8d84892925feed0cb022b27
58 N9682c576e9af462ca9ec846d5e9d8c00 schema:name pubmed_id
59 schema:value 29057963
60 rdf:type schema:PropertyValue
61 N9a903142f8d84892925feed0cb022b27 rdf:first sg:person.01244625416.94
62 rdf:rest Nf6bdd3b4cf3f42b48d128a867145a4d2
63 Nc5261d0fb38149d29a5a18f8d8c9a904 schema:affiliation https://www.grid.ac/institutes/grid.415698.7
64 schema:familyName Heng
65 schema:givenName Derick
66 rdf:type schema:Person
67 Nec731bc5dd0045c5929ef3aa6f8e6750 schema:name nlm_unique_id
68 schema:value 101563288
69 rdf:type schema:PropertyValue
70 Nf440ec446ebe468f94b580b18d8b1c89 schema:volumeNumber 7
71 rdf:type schema:PublicationVolume
72 Nf6bdd3b4cf3f42b48d128a867145a4d2 rdf:first Nc5261d0fb38149d29a5a18f8d8c9a904
73 rdf:rest N81e500b0048f4a798602767978cf8b87
74 Nf9d27008b8384d2691a1d34388b65139 rdf:first sg:person.01013433637.16
75 rdf:rest N15fe22dcc40c4cb989f74d6a797c655d
76 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
77 schema:name Medical and Health Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
80 schema:name Clinical Sciences
81 rdf:type schema:DefinedTerm
82 sg:journal.1045337 schema:issn 2045-2322
83 schema:name Scientific Reports
84 rdf:type schema:Periodical
85 sg:person.01013433637.16 schema:affiliation https://www.grid.ac/institutes/grid.490624.d
86 schema:familyName Lim
87 schema:givenName Wei-Yen
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013433637.16
89 rdf:type schema:Person
90 sg:person.01025364073.65 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
91 schema:familyName Yoong
92 schema:givenName Joanne
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025364073.65
94 rdf:type schema:Person
95 sg:person.01145636767.72 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
96 schema:familyName Loh
97 schema:givenName Tze Ping
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145636767.72
99 rdf:type schema:Person
100 sg:person.01244625416.94 schema:affiliation https://www.grid.ac/institutes/grid.415698.7
101 schema:familyName Ma
102 schema:givenName Stefan
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244625416.94
104 rdf:type schema:Person
105 sg:person.013665042413.62 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
106 schema:familyName Chai
107 schema:givenName Jia Hui
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013665042413.62
109 rdf:type schema:Person
110 sg:person.0720672616.11 schema:affiliation https://www.grid.ac/institutes/grid.412106.0
111 schema:familyName Toh
112 schema:givenName Sue-Anne
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720672616.11
114 rdf:type schema:Person
115 https://doi.org/10.1080/00365519950185229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049431624
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1371/journal.pone.0162102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024623492
118 rdf:type schema:CreativeWork
119 https://doi.org/10.2217/bmm.12.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026904496
120 rdf:type schema:CreativeWork
121 https://doi.org/10.2337/dc10-1546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032208135
122 rdf:type schema:CreativeWork
123 https://doi.org/10.2337/dc11-9997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013977232
124 rdf:type schema:CreativeWork
125 https://doi.org/10.2337/dc16-er09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043191276
126 rdf:type schema:CreativeWork
127 https://doi.org/10.2337/dc16-s001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014766819
128 rdf:type schema:CreativeWork
129 https://doi.org/10.3109/10408368909106595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014263370
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.412106.0 schema:alternateName National University Hospital
132 schema:name Department of Medicine, National University Hospital, Singapore, Singapore
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.415698.7 schema:alternateName Ministry of Health
135 schema:name Epidemiology & Disease Control Division, Ministry of Health, Singapore, Singapore
136 Public Health Group, Ministry of Health, Singapore, Singapore
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
139 schema:name Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore, Singapore
140 Department Laboratory Medicine, National University Hospital, Singapore, Singapore
141 Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
142 rdf:type schema:Organization
143 https://www.grid.ac/institutes/grid.490624.d schema:alternateName Agency for Integrated Care
144 schema:name Research and Development Office, Agency for Integrated Care, Singapore, Singapore
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...