Impact of analytical and biological variations on classification of diabetes using fasting plasma glucose, oral glucose tolerance test and HbA1c View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Jia Hui Chai, Stefan Ma, Derick Heng, Joanne Yoong, Wei-Yen Lim, Sue-Anne Toh, Tze Ping Loh

ABSTRACT

Historically, diabetes is diagnosed by measuring fasting (FPG) and two-hour post oral glucose load (OGTT) plasma concentration and interpreting it against recommended clinical thresholds of the patient. More recently, glycated haemoglobin A1c (HbA1c) has been included as a diagnostic criterion. Within-individual biological variation (CVi), analytical variation (CVa) and analytical bias of a test can impact on the accuracy and reproducibility of the classification of a disease. A test with large biological and analytical variation increases the likelihood of erroneous classification of the underlying disease state of a patient. Through numerical simulations based on the laboratory results generated from a large population health survey, we examined the impact of CVi, CVa and bias on the classification of diabetes using fasting plasma glucose (FPG), oral glucose tolerance test (OGTT) and HbA1c. From the results of the simulations, HbA1c has comparable performance to FPG and is better than OGTT in classifying subjects with diabetes, particularly when laboratory methods with smaller CVa are used. The use of the average of the results of the repeat laboratory tests has the effect of ameliorating the combined (analytical and biological) variation. The averaged result improves the consistency of the disease classification. More... »

PAGES

13721

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-14172-8

DOI

http://dx.doi.org/10.1038/s41598-017-14172-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092252323

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29057963


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chai", 
        "givenName": "Jia Hui", 
        "id": "sg:person.013665042413.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013665042413.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ministry of Health", 
          "id": "https://www.grid.ac/institutes/grid.415698.7", 
          "name": [
            "Epidemiology & Disease Control Division, Ministry of Health, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Stefan", 
        "id": "sg:person.01244625416.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244625416.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ministry of Health", 
          "id": "https://www.grid.ac/institutes/grid.415698.7", 
          "name": [
            "Public Health Group, Ministry of Health, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heng", 
        "givenName": "Derick", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoong", 
        "givenName": "Joanne", 
        "id": "sg:person.01025364073.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025364073.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agency for Integrated Care", 
          "id": "https://www.grid.ac/institutes/grid.490624.d", 
          "name": [
            "Research and Development Office, Agency for Integrated Care, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Wei-Yen", 
        "id": "sg:person.01013433637.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013433637.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412106.0", 
          "name": [
            "Department of Medicine, National University Hospital, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toh", 
        "givenName": "Sue-Anne", 
        "id": "sg:person.0720672616.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720672616.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department Laboratory Medicine, National University Hospital, Singapore, Singapore", 
            "Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Loh", 
        "givenName": "Tze Ping", 
        "id": "sg:person.01145636767.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145636767.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2337/dc11-9997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013977232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/10408368909106595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014263370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc16-s001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014766819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0162102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024623492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/bmm.12.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026904496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc10-1546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032208135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc16-er09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043191276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00365519950185229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049431624"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Historically, diabetes is diagnosed by measuring fasting (FPG) and two-hour post oral glucose load (OGTT) plasma concentration and interpreting it against recommended clinical thresholds of the patient. More recently, glycated haemoglobin A1c (HbA1c) has been included as a diagnostic criterion. Within-individual biological variation (CVi), analytical variation (CVa) and analytical bias of a test can impact on the accuracy and reproducibility of the classification of a disease. A test with large biological and analytical variation increases the likelihood of erroneous classification of the underlying disease state of a patient. Through numerical simulations based on the laboratory results generated from a large population health survey, we examined the impact of CVi, CVa and bias on the classification of diabetes using fasting plasma glucose (FPG), oral glucose tolerance test (OGTT) and HbA1c. From the results of the simulations, HbA1c has comparable performance to FPG and is better than OGTT in classifying subjects with diabetes, particularly when laboratory methods with smaller CVa are used. The use of the average of the results of the repeat laboratory tests has the effect of ameliorating the combined (analytical and biological) variation. The averaged result improves the consistency of the disease classification.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-14172-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Impact of analytical and biological variations on classification of diabetes using fasting plasma glucose, oral glucose tolerance test and HbA1c", 
    "pagination": "13721", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "874257f7436dfafd39872b457f97e57466622b4a0f5dbd3c5d06e1103d3c5609"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29057963"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-14172-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092252323"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-14172-8", 
      "https://app.dimensions.ai/details/publication/pub.1092252323"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000566.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-14172-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-14172-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-14172-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-14172-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-14172-8'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      37 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-14172-8 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nf04b546537e04ab29d59a73d66333403
4 schema:citation https://doi.org/10.1080/00365519950185229
5 https://doi.org/10.1371/journal.pone.0162102
6 https://doi.org/10.2217/bmm.12.57
7 https://doi.org/10.2337/dc10-1546
8 https://doi.org/10.2337/dc11-9997
9 https://doi.org/10.2337/dc16-er09
10 https://doi.org/10.2337/dc16-s001
11 https://doi.org/10.3109/10408368909106595
12 schema:datePublished 2017-12
13 schema:datePublishedReg 2017-12-01
14 schema:description Historically, diabetes is diagnosed by measuring fasting (FPG) and two-hour post oral glucose load (OGTT) plasma concentration and interpreting it against recommended clinical thresholds of the patient. More recently, glycated haemoglobin A1c (HbA1c) has been included as a diagnostic criterion. Within-individual biological variation (CVi), analytical variation (CVa) and analytical bias of a test can impact on the accuracy and reproducibility of the classification of a disease. A test with large biological and analytical variation increases the likelihood of erroneous classification of the underlying disease state of a patient. Through numerical simulations based on the laboratory results generated from a large population health survey, we examined the impact of CVi, CVa and bias on the classification of diabetes using fasting plasma glucose (FPG), oral glucose tolerance test (OGTT) and HbA1c. From the results of the simulations, HbA1c has comparable performance to FPG and is better than OGTT in classifying subjects with diabetes, particularly when laboratory methods with smaller CVa are used. The use of the average of the results of the repeat laboratory tests has the effect of ameliorating the combined (analytical and biological) variation. The averaged result improves the consistency of the disease classification.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N8bd41508596e49389c13a69181321987
19 Na615659cd9bd4357b2d8013ff2f3eb3e
20 sg:journal.1045337
21 schema:name Impact of analytical and biological variations on classification of diabetes using fasting plasma glucose, oral glucose tolerance test and HbA1c
22 schema:pagination 13721
23 schema:productId N21987656aeab40b1afb0c45bb1786644
24 N5a12707542264c0eae59027d94f4fba7
25 N638aee6847304d529db2a526064ad67e
26 N7bf16904cfda435b9ecf8a6f63a768b3
27 Nfadd926990c640cea230359fc748b679
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092252323
29 https://doi.org/10.1038/s41598-017-14172-8
30 schema:sdDatePublished 2019-04-11T00:25
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N462836bebb5544fe9b7d6212415da719
33 schema:url https://www.nature.com/articles/s41598-017-14172-8
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N21987656aeab40b1afb0c45bb1786644 schema:name nlm_unique_id
38 schema:value 101563288
39 rdf:type schema:PropertyValue
40 N3819c5db7d424f1893b4878486e346b3 rdf:first Na218fcf422d34c3e9591c14c0402347b
41 rdf:rest Neda27bbf0ba44ffb9f85a7d8f5398499
42 N462836bebb5544fe9b7d6212415da719 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N5a12707542264c0eae59027d94f4fba7 schema:name doi
45 schema:value 10.1038/s41598-017-14172-8
46 rdf:type schema:PropertyValue
47 N638aee6847304d529db2a526064ad67e schema:name pubmed_id
48 schema:value 29057963
49 rdf:type schema:PropertyValue
50 N73ec7992b2d343b79b59f9a02a8c096a rdf:first sg:person.0720672616.11
51 rdf:rest Nb59fc94990784e8b9aee7692f246fea0
52 N7bf16904cfda435b9ecf8a6f63a768b3 schema:name dimensions_id
53 schema:value pub.1092252323
54 rdf:type schema:PropertyValue
55 N8bd41508596e49389c13a69181321987 schema:issueNumber 1
56 rdf:type schema:PublicationIssue
57 N9267cfe9a5c6415880c0fddfc5a483a3 rdf:first sg:person.01244625416.94
58 rdf:rest N3819c5db7d424f1893b4878486e346b3
59 Na218fcf422d34c3e9591c14c0402347b schema:affiliation https://www.grid.ac/institutes/grid.415698.7
60 schema:familyName Heng
61 schema:givenName Derick
62 rdf:type schema:Person
63 Na615659cd9bd4357b2d8013ff2f3eb3e schema:volumeNumber 7
64 rdf:type schema:PublicationVolume
65 Nb59fc94990784e8b9aee7692f246fea0 rdf:first sg:person.01145636767.72
66 rdf:rest rdf:nil
67 Nbd4d95fa25664d46a730b89d32974409 rdf:first sg:person.01013433637.16
68 rdf:rest N73ec7992b2d343b79b59f9a02a8c096a
69 Neda27bbf0ba44ffb9f85a7d8f5398499 rdf:first sg:person.01025364073.65
70 rdf:rest Nbd4d95fa25664d46a730b89d32974409
71 Nf04b546537e04ab29d59a73d66333403 rdf:first sg:person.013665042413.62
72 rdf:rest N9267cfe9a5c6415880c0fddfc5a483a3
73 Nfadd926990c640cea230359fc748b679 schema:name readcube_id
74 schema:value 874257f7436dfafd39872b457f97e57466622b4a0f5dbd3c5d06e1103d3c5609
75 rdf:type schema:PropertyValue
76 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
77 schema:name Medical and Health Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
80 schema:name Clinical Sciences
81 rdf:type schema:DefinedTerm
82 sg:journal.1045337 schema:issn 2045-2322
83 schema:name Scientific Reports
84 rdf:type schema:Periodical
85 sg:person.01013433637.16 schema:affiliation https://www.grid.ac/institutes/grid.490624.d
86 schema:familyName Lim
87 schema:givenName Wei-Yen
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013433637.16
89 rdf:type schema:Person
90 sg:person.01025364073.65 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
91 schema:familyName Yoong
92 schema:givenName Joanne
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025364073.65
94 rdf:type schema:Person
95 sg:person.01145636767.72 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
96 schema:familyName Loh
97 schema:givenName Tze Ping
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145636767.72
99 rdf:type schema:Person
100 sg:person.01244625416.94 schema:affiliation https://www.grid.ac/institutes/grid.415698.7
101 schema:familyName Ma
102 schema:givenName Stefan
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244625416.94
104 rdf:type schema:Person
105 sg:person.013665042413.62 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
106 schema:familyName Chai
107 schema:givenName Jia Hui
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013665042413.62
109 rdf:type schema:Person
110 sg:person.0720672616.11 schema:affiliation https://www.grid.ac/institutes/grid.412106.0
111 schema:familyName Toh
112 schema:givenName Sue-Anne
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720672616.11
114 rdf:type schema:Person
115 https://doi.org/10.1080/00365519950185229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049431624
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1371/journal.pone.0162102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024623492
118 rdf:type schema:CreativeWork
119 https://doi.org/10.2217/bmm.12.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026904496
120 rdf:type schema:CreativeWork
121 https://doi.org/10.2337/dc10-1546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032208135
122 rdf:type schema:CreativeWork
123 https://doi.org/10.2337/dc11-9997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013977232
124 rdf:type schema:CreativeWork
125 https://doi.org/10.2337/dc16-er09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043191276
126 rdf:type schema:CreativeWork
127 https://doi.org/10.2337/dc16-s001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014766819
128 rdf:type schema:CreativeWork
129 https://doi.org/10.3109/10408368909106595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014263370
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.412106.0 schema:alternateName National University Hospital
132 schema:name Department of Medicine, National University Hospital, Singapore, Singapore
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.415698.7 schema:alternateName Ministry of Health
135 schema:name Epidemiology & Disease Control Division, Ministry of Health, Singapore, Singapore
136 Public Health Group, Ministry of Health, Singapore, Singapore
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
139 schema:name Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore, Singapore
140 Department Laboratory Medicine, National University Hospital, Singapore, Singapore
141 Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
142 rdf:type schema:Organization
143 https://www.grid.ac/institutes/grid.490624.d schema:alternateName Agency for Integrated Care
144 schema:name Research and Development Office, Agency for Integrated Care, Singapore, Singapore
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...