A machine-learning heuristic to improve gene score prediction of polygenic traits View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Guillaume Paré, Shihong Mao, Wei Q. Deng

ABSTRACT

Machine-learning techniques have helped solve a broad range of prediction problems, yet are not widely used to build polygenic risk scores for the prediction of complex traits. We propose a novel heuristic based on machine-learning techniques (GraBLD) to boost the predictive performance of polygenic risk scores. Gradient boosted regression trees were first used to optimize the weights of SNPs included in the score, followed by a novel regional adjustment for linkage disequilibrium. A calibration set with sample size of ~200 individuals was sufficient for optimal performance. GraBLD yielded prediction R 2 of 0.239 and 0.082 using GIANT summary association statistics for height and BMI in the UK Biobank study (N = 130 K; 1.98 M SNPs), explaining 46.9% and 32.7% of the overall polygenic variance, respectively. For diabetes status, the area under the receiver operating characteristic curve was 0.602 in the UK Biobank study using summary-level association statistics from the DIAGRAM consortium. GraBLD outperformed other polygenic score heuristics for the prediction of height (p < 2.2 × 10-16) and BMI (p < 1.57 × 10-4), and was equivalent to LDpred for diabetes. Results were independently validated in the Health and Retirement Study (N = 8,292; 688,398 SNPs). Our report demonstrates the use of machine-learning techniques, coupled with summary-level data from large genome-wide meta-analyses to improve the prediction of polygenic traits. More... »

PAGES

12665

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-13056-1

DOI

http://dx.doi.org/10.1038/s41598-017-13056-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092023331

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28979001


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "McMaster University", 
          "id": "https://www.grid.ac/institutes/grid.25073.33", 
          "name": [
            "Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Canada", 
            "Population Genomics Program, Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Canada", 
            "Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Par\u00e9", 
        "givenName": "Guillaume", 
        "id": "sg:person.01207753503.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207753503.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Population Health Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.415102.3", 
          "name": [
            "Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mao", 
        "givenName": "Shihong", 
        "id": "sg:person.01004554343.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004554343.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Statistical Sciences, University of Toronto, Toronto, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deng", 
        "givenName": "Wei Q.", 
        "id": "sg:person.01107376300.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107376300.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/gepi.21906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001909348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.21906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001909348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004746414", 
          "https://doi.org/10.1038/nrg3472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006357119", 
          "https://doi.org/10.1038/ng.3097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2010.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009497006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011024359", 
          "https://doi.org/10.1038/ng.2383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013643799", 
          "https://doi.org/10.1038/ng.686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013643799", 
          "https://doi.org/10.1038/ng.686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015057090", 
          "https://doi.org/10.1038/ng.608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015057090", 
          "https://doi.org/10.1038/ng.608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/14622416.10.2.191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016898872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/519795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019061180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1016218223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020629296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025133227", 
          "https://doi.org/10.1038/nature08185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025133227", 
          "https://doi.org/10.1038/nature08185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1032573094", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-84858-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032573094", 
          "https://doi.org/10.1007/978-0-387-84858-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-84858-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032573094", 
          "https://doi.org/10.1007/978-0-387-84858-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.1001779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033632930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037714920", 
          "https://doi.org/10.1038/nature09410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037714920", 
          "https://doi.org/10.1038/nature09410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2015.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046213550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047659846", 
          "https://doi.org/10.1038/ng1071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047659846", 
          "https://doi.org/10.1038/ng1071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049236324", 
          "https://doi.org/10.1038/ng.2606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053003561", 
          "https://doi.org/10.1038/nature14177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehw450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059577184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehw450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059577184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106875674", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118548387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106875674"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Machine-learning techniques have helped solve a broad range of prediction problems, yet are not widely used to build polygenic risk scores for the prediction of complex traits. We propose a novel heuristic based on machine-learning techniques (GraBLD) to boost the predictive performance of polygenic risk scores. Gradient boosted regression trees were first used to optimize the weights of SNPs included in the score, followed by a novel regional adjustment for linkage disequilibrium. A calibration set with sample size of ~200 individuals was sufficient for optimal performance. GraBLD yielded prediction R 2 of 0.239 and 0.082 using GIANT summary association statistics for height and BMI in the UK Biobank study (N\u2009=\u2009130\u2009K; 1.98\u2009M SNPs), explaining 46.9% and 32.7% of the overall polygenic variance, respectively. For diabetes status, the area under the receiver operating characteristic curve was 0.602 in the UK Biobank study using summary-level association statistics from the DIAGRAM consortium. GraBLD outperformed other polygenic score heuristics for the prediction of height (p\u2009<\u20092.2\u2009\u00d7\u200910-16) and BMI (p\u2009<\u20091.57\u2009\u00d7\u200910-4), and was equivalent to LDpred for diabetes. Results were independently validated in the Health and Retirement Study (N\u2009=\u20098,292; 688,398 SNPs). Our report demonstrates the use of machine-learning techniques, coupled with summary-level data from large genome-wide meta-analyses to improve the prediction of polygenic traits.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-13056-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2786773", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "A machine-learning heuristic to improve gene score prediction of polygenic traits", 
    "pagination": "12665", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4074ce66a9c5ac05ac15de5d966dfe9f15b02dadf1aba03fa8573c413eef0ce4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28979001"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-13056-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092023331"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-13056-1", 
      "https://app.dimensions.ai/details/publication/pub.1092023331"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-13056-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-13056-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-13056-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-13056-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-13056-1'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      51 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-13056-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N91064808b65e4629b51211684ede8eed
4 schema:citation sg:pub.10.1007/978-0-387-84858-7
5 sg:pub.10.1038/nature08185
6 sg:pub.10.1038/nature09410
7 sg:pub.10.1038/nature14177
8 sg:pub.10.1038/ng.2383
9 sg:pub.10.1038/ng.2606
10 sg:pub.10.1038/ng.3097
11 sg:pub.10.1038/ng.608
12 sg:pub.10.1038/ng.686
13 sg:pub.10.1038/ng1071
14 sg:pub.10.1038/nrg3472
15 https://app.dimensions.ai/details/publication/pub.1032573094
16 https://app.dimensions.ai/details/publication/pub.1106875674
17 https://doi.org/10.1002/9781118548387
18 https://doi.org/10.1002/gepi.21906
19 https://doi.org/10.1016/j.ajhg.2010.11.011
20 https://doi.org/10.1016/j.ajhg.2015.09.001
21 https://doi.org/10.1086/519795
22 https://doi.org/10.1093/eurheartj/ehw450
23 https://doi.org/10.1214/aos/1016218223
24 https://doi.org/10.1371/journal.pmed.1001779
25 https://doi.org/10.2217/14622416.10.2.191
26 schema:datePublished 2017-12
27 schema:datePublishedReg 2017-12-01
28 schema:description Machine-learning techniques have helped solve a broad range of prediction problems, yet are not widely used to build polygenic risk scores for the prediction of complex traits. We propose a novel heuristic based on machine-learning techniques (GraBLD) to boost the predictive performance of polygenic risk scores. Gradient boosted regression trees were first used to optimize the weights of SNPs included in the score, followed by a novel regional adjustment for linkage disequilibrium. A calibration set with sample size of ~200 individuals was sufficient for optimal performance. GraBLD yielded prediction R <sup>2</sup> of 0.239 and 0.082 using GIANT summary association statistics for height and BMI in the UK Biobank study (N = 130 K; 1.98 M SNPs), explaining 46.9% and 32.7% of the overall polygenic variance, respectively. For diabetes status, the area under the receiver operating characteristic curve was 0.602 in the UK Biobank study using summary-level association statistics from the DIAGRAM consortium. GraBLD outperformed other polygenic score heuristics for the prediction of height (p &lt; 2.2 × 10<sup>-16</sup>) and BMI (p &lt; 1.57 × 10<sup>-4</sup>), and was equivalent to LDpred for diabetes. Results were independently validated in the Health and Retirement Study (N = 8,292; 688,398 SNPs). Our report demonstrates the use of machine-learning techniques, coupled with summary-level data from large genome-wide meta-analyses to improve the prediction of polygenic traits.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N1e3084a2bbc948b4a02e924551d11b83
33 Nadbe8d6d661a45b0a0ad86c272d099fb
34 sg:journal.1045337
35 schema:name A machine-learning heuristic to improve gene score prediction of polygenic traits
36 schema:pagination 12665
37 schema:productId N3a1f150cdf1f409bbb090adc0e69479c
38 N426d7acabfbb4b35afe55ad2c9c68f64
39 N4f42ad54284b495286397d2a1d8bc4ee
40 N76730c493cf248f096e66a0aa0495339
41 N856a4d4c688b434b85e3d62e92a7ad42
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092023331
43 https://doi.org/10.1038/s41598-017-13056-1
44 schema:sdDatePublished 2019-04-10T20:59
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N94e55daf6803425fbc80b6e0854d367f
47 schema:url https://www.nature.com/articles/s41598-017-13056-1
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N1e3084a2bbc948b4a02e924551d11b83 schema:issueNumber 1
52 rdf:type schema:PublicationIssue
53 N3a1f150cdf1f409bbb090adc0e69479c schema:name doi
54 schema:value 10.1038/s41598-017-13056-1
55 rdf:type schema:PropertyValue
56 N426d7acabfbb4b35afe55ad2c9c68f64 schema:name readcube_id
57 schema:value 4074ce66a9c5ac05ac15de5d966dfe9f15b02dadf1aba03fa8573c413eef0ce4
58 rdf:type schema:PropertyValue
59 N4f42ad54284b495286397d2a1d8bc4ee schema:name pubmed_id
60 schema:value 28979001
61 rdf:type schema:PropertyValue
62 N76730c493cf248f096e66a0aa0495339 schema:name nlm_unique_id
63 schema:value 101563288
64 rdf:type schema:PropertyValue
65 N856a4d4c688b434b85e3d62e92a7ad42 schema:name dimensions_id
66 schema:value pub.1092023331
67 rdf:type schema:PropertyValue
68 N88f5928a26bc46c987083b06749563f4 rdf:first sg:person.01004554343.74
69 rdf:rest Na508a276d739469ca10c248f6e1acc3e
70 N91064808b65e4629b51211684ede8eed rdf:first sg:person.01207753503.50
71 rdf:rest N88f5928a26bc46c987083b06749563f4
72 N94e55daf6803425fbc80b6e0854d367f schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Na508a276d739469ca10c248f6e1acc3e rdf:first sg:person.01107376300.58
75 rdf:rest rdf:nil
76 Nadbe8d6d661a45b0a0ad86c272d099fb schema:volumeNumber 7
77 rdf:type schema:PublicationVolume
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
82 schema:name Artificial Intelligence and Image Processing
83 rdf:type schema:DefinedTerm
84 sg:grant.2786773 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-13056-1
85 rdf:type schema:MonetaryGrant
86 sg:journal.1045337 schema:issn 2045-2322
87 schema:name Scientific Reports
88 rdf:type schema:Periodical
89 sg:person.01004554343.74 schema:affiliation https://www.grid.ac/institutes/grid.415102.3
90 schema:familyName Mao
91 schema:givenName Shihong
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004554343.74
93 rdf:type schema:Person
94 sg:person.01107376300.58 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
95 schema:familyName Deng
96 schema:givenName Wei Q.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107376300.58
98 rdf:type schema:Person
99 sg:person.01207753503.50 schema:affiliation https://www.grid.ac/institutes/grid.25073.33
100 schema:familyName Paré
101 schema:givenName Guillaume
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207753503.50
103 rdf:type schema:Person
104 sg:pub.10.1007/978-0-387-84858-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032573094
105 https://doi.org/10.1007/978-0-387-84858-7
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/nature08185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025133227
108 https://doi.org/10.1038/nature08185
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/nature09410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037714920
111 https://doi.org/10.1038/nature09410
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/nature14177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053003561
114 https://doi.org/10.1038/nature14177
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/ng.2383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011024359
117 https://doi.org/10.1038/ng.2383
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/ng.2606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049236324
120 https://doi.org/10.1038/ng.2606
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/ng.3097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006357119
123 https://doi.org/10.1038/ng.3097
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/ng.608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015057090
126 https://doi.org/10.1038/ng.608
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/ng.686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013643799
129 https://doi.org/10.1038/ng.686
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/ng1071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047659846
132 https://doi.org/10.1038/ng1071
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nrg3472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004746414
135 https://doi.org/10.1038/nrg3472
136 rdf:type schema:CreativeWork
137 https://app.dimensions.ai/details/publication/pub.1032573094 schema:CreativeWork
138 https://app.dimensions.ai/details/publication/pub.1106875674 schema:CreativeWork
139 https://doi.org/10.1002/9781118548387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106875674
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/gepi.21906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001909348
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ajhg.2010.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009497006
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.ajhg.2015.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046213550
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1093/eurheartj/ehw450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059577184
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1214/aos/1016218223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020629296
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1371/journal.pmed.1001779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033632930
154 rdf:type schema:CreativeWork
155 https://doi.org/10.2217/14622416.10.2.191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016898872
156 rdf:type schema:CreativeWork
157 https://www.grid.ac/institutes/grid.17063.33 schema:alternateName University of Toronto
158 schema:name Department of Statistical Sciences, University of Toronto, Toronto, Canada
159 rdf:type schema:Organization
160 https://www.grid.ac/institutes/grid.25073.33 schema:alternateName McMaster University
161 schema:name Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
162 Population Genomics Program, Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Canada
163 Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Canada
164 rdf:type schema:Organization
165 https://www.grid.ac/institutes/grid.415102.3 schema:alternateName Population Health Research Institute
166 schema:name Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Canada
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...