Development of A Machine Learning Algorithm to Classify Drugs Of Unknown Fetal Effect View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-10-09

AUTHORS

Mary Regina Boland, Fernanda Polubriaginof, Nicholas P. Tatonetti

ABSTRACT

Many drugs commonly prescribed during pregnancy lack a fetal safety recommendation - called FDA 'category C' drugs. This study aims to classify these drugs into harmful and safe categories using knowledge gained from chemoinformatics (i.e., pharmacological similarity with drugs of known fetal effect) and empirical data (i.e., derived from Electronic Health Records). Our fetal loss cohort contains 14,922 affected and 33,043 unaffected pregnancies and our congenital anomalies cohort contains 5,658 affected and 31,240 unaffected infants. We trained a random forest to classify drugs of unknown pregnancy class into harmful or safe categories, focusing on two distinct outcomes: fetal loss and congenital anomalies. Our models achieved an out-of-bag accuracy of 91% for fetal loss and 87% for congenital anomalies outperforming null models. Fifty-seven 'category C' medications were classified as harmful for fetal loss and eleven for congenital anomalies. This includes medications with documented harmful effects, including naproxen, ibuprofen and rubella live vaccine. We also identified several novel drugs, e.g., haloperidol, that increased the risk of fetal loss. Our approach provides important information on the harmfulness of 'category C' drugs. This is needed, as no FDA recommendation exists for these drugs' fetal safety. More... »

PAGES

12839

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-12943-x

DOI

http://dx.doi.org/10.1038/s41598-017-12943-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092092366

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28993650


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1114", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Paediatrics and Reproductive Medicine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug-Related Side Effects and Adverse Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Embryo Loss", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fetus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States Food and Drug Administration", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Observational Health Data Sciences and Informatics, Columbia University, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, USA", 
            "Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, USA", 
            "Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, USA", 
            "Department of Biomedical and Health Informatics, Children\u2019s Hospital of Philadelphia, Philadelphia, USA", 
            "Department of Biomedical Informatics, Columbia University, New York, USA", 
            "Department of Medicine, Columbia University, New York, USA", 
            "Department of Systems Biology, Columbia University, New York, USA", 
            "Observational Health Data Sciences and Informatics, Columbia University, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boland", 
        "givenName": "Mary Regina", 
        "id": "sg:person.0770233234.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770233234.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Systems Biology, Columbia University, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Biomedical Informatics, Columbia University, New York, USA", 
            "Department of Medicine, Columbia University, New York, USA", 
            "Department of Systems Biology, Columbia University, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Polubriaginof", 
        "givenName": "Fernanda", 
        "id": "sg:person.01256502043.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256502043.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Observational Health Data Sciences and Informatics, Columbia University, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Biomedical Informatics, Columbia University, New York, USA", 
            "Department of Medicine, Columbia University, New York, USA", 
            "Department of Systems Biology, Columbia University, New York, USA", 
            "Observational Health Data Sciences and Informatics, Columbia University, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tatonetti", 
        "givenName": "Nicholas P.", 
        "id": "sg:person.0651210417.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651210417.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1016/j.ejmhg.2016.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003430155", 
          "https://doi.org/10.1016/j.ejmhg.2016.04.001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/tpj.2016.48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029769655", 
          "https://doi.org/10.1038/tpj.2016.48"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.clpt.6100100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033799581", 
          "https://doi.org/10.1038/sj.clpt.6100100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002280050608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021887686", 
          "https://doi.org/10.1007/s002280050608"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10-09", 
    "datePublishedReg": "2017-10-09", 
    "description": "Many drugs commonly prescribed during pregnancy lack a fetal safety recommendation - called FDA 'category C' drugs. This study aims to classify these drugs into harmful and safe categories using knowledge gained from chemoinformatics (i.e., pharmacological similarity with drugs of known fetal effect) and empirical data (i.e., derived from Electronic Health Records). Our fetal loss cohort contains 14,922 affected and 33,043 unaffected pregnancies and our congenital anomalies cohort contains 5,658 affected and 31,240 unaffected infants. We trained a random forest to classify drugs of unknown pregnancy class into harmful or safe categories, focusing on two distinct outcomes: fetal loss and congenital anomalies. Our models achieved an out-of-bag accuracy of 91% for fetal loss and 87% for congenital anomalies outperforming null models. Fifty-seven 'category C' medications were classified as harmful for fetal loss and eleven for congenital anomalies. This includes medications with documented harmful effects, including naproxen, ibuprofen and rubella live vaccine. We also identified several novel drugs, e.g., haloperidol, that increased the risk of fetal loss. Our approach provides important information on the harmfulness of 'category C' drugs. This is needed, as no FDA recommendation exists for these drugs' fetal safety.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-017-12943-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5504703", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5476817", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6443161", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5475369", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2439110", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3801821", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "fetal loss", 
      "congenital anomalies", 
      "fetal safety", 
      "unaffected infants", 
      "fetal effects", 
      "unaffected pregnancies", 
      "pregnancy classes", 
      "live vaccine", 
      "FDA recommendations", 
      "novel drugs", 
      "drugs", 
      "category C", 
      "safe category", 
      "medications", 
      "cohort", 
      "harmful effects", 
      "distinct outcomes", 
      "pregnancy", 
      "haloperidol", 
      "infants", 
      "vaccine", 
      "FDA", 
      "outcomes", 
      "loss", 
      "risk", 
      "ibuprofen", 
      "safety", 
      "effect", 
      "naproxen", 
      "anomalies", 
      "important information", 
      "categories", 
      "recommendations", 
      "study", 
      "lack", 
      "data", 
      "development", 
      "knowledge", 
      "harmfulness", 
      "model", 
      "information", 
      "bag accuracy", 
      "approach", 
      "class", 
      "random forest", 
      "accuracy", 
      "empirical data", 
      "chemoinformatics", 
      "machine", 
      "null model", 
      "algorithm", 
      "forest", 
      "pregnancy lack", 
      "fetal safety recommendation - called FDA", 
      "safety recommendation - called FDA", 
      "recommendation - called FDA", 
      "fetal loss cohort", 
      "loss cohort", 
      "congenital anomalies cohort", 
      "anomalies cohort", 
      "unknown pregnancy class", 
      "rubella live vaccine", 
      "drugs' fetal safety", 
      "Unknown Fetal Effect"
    ], 
    "name": "Development of A Machine Learning Algorithm to Classify Drugs Of Unknown Fetal Effect", 
    "pagination": "12839", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092092366"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-12943-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28993650"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-12943-x", 
      "https://app.dimensions.ai/details/publication/pub.1092092366"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_722.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-017-12943-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-12943-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-12943-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-12943-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-12943-x'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      22 PREDICATES      107 URIs      95 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-12943-x schema:about N1a7ccaf974bb421aa618443ba512d1c8
2 N1adb5197be534f6e8162432d18c1e493
3 N29808c38af39438fb9327f7c17b2ae4f
4 N32103d44a43c4c509af2a5f20f8250b1
5 N485f5213e2494a32bcf1e2c0bacc3463
6 N48ec7fddf93749ef8d5155ae438afe87
7 N6c5734fb0a5c4e559e294f78eb8ff6e6
8 N7a34dbed99a045228a20c18c359cc1a5
9 N7d0db1d42f714953bdc3e4b45cf2192e
10 Na2ab6b81e1f54192abf9da295cbffa9d
11 Nb40107142a0948cda8229276d010ad9c
12 Nc795853f5a4c4deb9438d97cd7859a51
13 Nf9f7b5e2f8bb4dc381ca141e1548eb68
14 anzsrc-for:11
15 anzsrc-for:1114
16 schema:author N3c67471a557c40e3b4c75489cd867172
17 schema:citation sg:pub.10.1007/s002280050608
18 sg:pub.10.1016/j.ejmhg.2016.04.001
19 sg:pub.10.1038/sj.clpt.6100100
20 sg:pub.10.1038/tpj.2016.48
21 schema:datePublished 2017-10-09
22 schema:datePublishedReg 2017-10-09
23 schema:description Many drugs commonly prescribed during pregnancy lack a fetal safety recommendation - called FDA 'category C' drugs. This study aims to classify these drugs into harmful and safe categories using knowledge gained from chemoinformatics (i.e., pharmacological similarity with drugs of known fetal effect) and empirical data (i.e., derived from Electronic Health Records). Our fetal loss cohort contains 14,922 affected and 33,043 unaffected pregnancies and our congenital anomalies cohort contains 5,658 affected and 31,240 unaffected infants. We trained a random forest to classify drugs of unknown pregnancy class into harmful or safe categories, focusing on two distinct outcomes: fetal loss and congenital anomalies. Our models achieved an out-of-bag accuracy of 91% for fetal loss and 87% for congenital anomalies outperforming null models. Fifty-seven 'category C' medications were classified as harmful for fetal loss and eleven for congenital anomalies. This includes medications with documented harmful effects, including naproxen, ibuprofen and rubella live vaccine. We also identified several novel drugs, e.g., haloperidol, that increased the risk of fetal loss. Our approach provides important information on the harmfulness of 'category C' drugs. This is needed, as no FDA recommendation exists for these drugs' fetal safety.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N1a42e60adb644539afd31c2ba91fe3b0
28 N38c49c61ca4142b2ad63c7c8bae1fe51
29 sg:journal.1045337
30 schema:keywords FDA
31 FDA recommendations
32 Unknown Fetal Effect
33 accuracy
34 algorithm
35 anomalies
36 anomalies cohort
37 approach
38 bag accuracy
39 categories
40 category C
41 chemoinformatics
42 class
43 cohort
44 congenital anomalies
45 congenital anomalies cohort
46 data
47 development
48 distinct outcomes
49 drugs
50 drugs' fetal safety
51 effect
52 empirical data
53 fetal effects
54 fetal loss
55 fetal loss cohort
56 fetal safety
57 fetal safety recommendation - called FDA
58 forest
59 haloperidol
60 harmful effects
61 harmfulness
62 ibuprofen
63 important information
64 infants
65 information
66 knowledge
67 lack
68 live vaccine
69 loss
70 loss cohort
71 machine
72 medications
73 model
74 naproxen
75 novel drugs
76 null model
77 outcomes
78 pregnancy
79 pregnancy classes
80 pregnancy lack
81 random forest
82 recommendation - called FDA
83 recommendations
84 risk
85 rubella live vaccine
86 safe category
87 safety
88 safety recommendation - called FDA
89 study
90 unaffected infants
91 unaffected pregnancies
92 unknown pregnancy class
93 vaccine
94 schema:name Development of A Machine Learning Algorithm to Classify Drugs Of Unknown Fetal Effect
95 schema:pagination 12839
96 schema:productId N8a4b54527f464320aa7b5724c30cf971
97 N8dc77b36ecec4394af8aac90239ea97a
98 Nc7e6c8f493d94077b945dfbde89c7074
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092092366
100 https://doi.org/10.1038/s41598-017-12943-x
101 schema:sdDatePublished 2021-12-01T19:39
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher Nb4ac30a8468f4d81b9a2447e187dba96
104 schema:url https://doi.org/10.1038/s41598-017-12943-x
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N1a42e60adb644539afd31c2ba91fe3b0 schema:volumeNumber 7
109 rdf:type schema:PublicationVolume
110 N1a7ccaf974bb421aa618443ba512d1c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Female
112 rdf:type schema:DefinedTerm
113 N1adb5197be534f6e8162432d18c1e493 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Infant
115 rdf:type schema:DefinedTerm
116 N29808c38af39438fb9327f7c17b2ae4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Drug-Related Side Effects and Adverse Reactions
118 rdf:type schema:DefinedTerm
119 N32103d44a43c4c509af2a5f20f8250b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Algorithms
121 rdf:type schema:DefinedTerm
122 N38c49c61ca4142b2ad63c7c8bae1fe51 schema:issueNumber 1
123 rdf:type schema:PublicationIssue
124 N3c67471a557c40e3b4c75489cd867172 rdf:first sg:person.0770233234.36
125 rdf:rest N67845940b2c345969672a494efabe12a
126 N485f5213e2494a32bcf1e2c0bacc3463 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Fetus
128 rdf:type schema:DefinedTerm
129 N48ec7fddf93749ef8d5155ae438afe87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Models, Theoretical
131 rdf:type schema:DefinedTerm
132 N67845940b2c345969672a494efabe12a rdf:first sg:person.01256502043.27
133 rdf:rest N82e3340981d441a2a67540048c07acd9
134 N6c5734fb0a5c4e559e294f78eb8ff6e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name United States
136 rdf:type schema:DefinedTerm
137 N7a34dbed99a045228a20c18c359cc1a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Adult
139 rdf:type schema:DefinedTerm
140 N7d0db1d42f714953bdc3e4b45cf2192e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Databases as Topic
142 rdf:type schema:DefinedTerm
143 N82e3340981d441a2a67540048c07acd9 rdf:first sg:person.0651210417.29
144 rdf:rest rdf:nil
145 N8a4b54527f464320aa7b5724c30cf971 schema:name pubmed_id
146 schema:value 28993650
147 rdf:type schema:PropertyValue
148 N8dc77b36ecec4394af8aac90239ea97a schema:name doi
149 schema:value 10.1038/s41598-017-12943-x
150 rdf:type schema:PropertyValue
151 Na2ab6b81e1f54192abf9da295cbffa9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Machine Learning
153 rdf:type schema:DefinedTerm
154 Nb40107142a0948cda8229276d010ad9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Embryo Loss
156 rdf:type schema:DefinedTerm
157 Nb4ac30a8468f4d81b9a2447e187dba96 schema:name Springer Nature - SN SciGraph project
158 rdf:type schema:Organization
159 Nc795853f5a4c4deb9438d97cd7859a51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name United States Food and Drug Administration
161 rdf:type schema:DefinedTerm
162 Nc7e6c8f493d94077b945dfbde89c7074 schema:name dimensions_id
163 schema:value pub.1092092366
164 rdf:type schema:PropertyValue
165 Nf9f7b5e2f8bb4dc381ca141e1548eb68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Humans
167 rdf:type schema:DefinedTerm
168 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
169 schema:name Medical and Health Sciences
170 rdf:type schema:DefinedTerm
171 anzsrc-for:1114 schema:inDefinedTermSet anzsrc-for:
172 schema:name Paediatrics and Reproductive Medicine
173 rdf:type schema:DefinedTerm
174 sg:grant.2439110 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-12943-x
175 rdf:type schema:MonetaryGrant
176 sg:grant.3801821 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-12943-x
177 rdf:type schema:MonetaryGrant
178 sg:grant.5475369 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-12943-x
179 rdf:type schema:MonetaryGrant
180 sg:grant.5476817 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-12943-x
181 rdf:type schema:MonetaryGrant
182 sg:grant.5504703 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-12943-x
183 rdf:type schema:MonetaryGrant
184 sg:grant.6443161 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-12943-x
185 rdf:type schema:MonetaryGrant
186 sg:journal.1045337 schema:issn 2045-2322
187 schema:name Scientific Reports
188 schema:publisher Springer Nature
189 rdf:type schema:Periodical
190 sg:person.01256502043.27 schema:affiliation grid-institutes:grid.21729.3f
191 schema:familyName Polubriaginof
192 schema:givenName Fernanda
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256502043.27
194 rdf:type schema:Person
195 sg:person.0651210417.29 schema:affiliation grid-institutes:grid.21729.3f
196 schema:familyName Tatonetti
197 schema:givenName Nicholas P.
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651210417.29
199 rdf:type schema:Person
200 sg:person.0770233234.36 schema:affiliation grid-institutes:grid.21729.3f
201 schema:familyName Boland
202 schema:givenName Mary Regina
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770233234.36
204 rdf:type schema:Person
205 sg:pub.10.1007/s002280050608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021887686
206 https://doi.org/10.1007/s002280050608
207 rdf:type schema:CreativeWork
208 sg:pub.10.1016/j.ejmhg.2016.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003430155
209 https://doi.org/10.1016/j.ejmhg.2016.04.001
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/sj.clpt.6100100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033799581
212 https://doi.org/10.1038/sj.clpt.6100100
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/tpj.2016.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029769655
215 https://doi.org/10.1038/tpj.2016.48
216 rdf:type schema:CreativeWork
217 grid-institutes:grid.21729.3f schema:alternateName Department of Systems Biology, Columbia University, New York, USA
218 Observational Health Data Sciences and Informatics, Columbia University, New York, USA
219 schema:name Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, USA
220 Department of Biomedical Informatics, Columbia University, New York, USA
221 Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, USA
222 Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, USA
223 Department of Medicine, Columbia University, New York, USA
224 Department of Systems Biology, Columbia University, New York, USA
225 Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, USA
226 Observational Health Data Sciences and Informatics, Columbia University, New York, USA
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...