Determination of extracellular matrix collagen fibril architectures and pathological remodeling by polarization dependent second harmonic microscopy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Denis Rouède, Emmanuel Schaub, Jean-Jacques Bellanger, Frédéric Ezan, Jean-Claude Scimeca, Georges Baffet, François Tiaho

ABSTRACT

Polarization dependence second harmonic generation (P-SHG) microscopy is gaining increase popularity for in situ quantification of fibrillar protein architectures. In this report, we combine P-SHG microscopy, new linear least square (LLS) fitting and modeling to determine and convert the complex second-order non-linear optical anisotropy parameter ρ of several collagen rich tissues into a simple geometric organization of collagen fibrils. Modeling integrates a priori knowledge of polyhelical organization of collagen molecule polymers forming fibrils and bundles of fibrils as well as Poisson photonic shot noise of the detection system. The results, which accurately predict the known sub-microscopic hierarchical organization of collagen fibrils in several tissues, suggest that they can be subdivided into three classes according to their microscopic and macroscopic hierarchical organization of collagen fibrils. They also show, for the first time to our knowledge, intrahepatic spatial discrimination between genuine fibrotic and non-fibrotic vessels. CCl4-treated livers are characterized by an increase in the percentage of fibrotic vessels and their remodeling involves peri-portal compaction and alignment of collagen fibrils that should contribute to portal hypertension. This integrated P-SHG image analysis method is a powerful tool that should open new avenue for the determination of pathophysiological and chemo-mechanical cues impacting collagen fibrils organization. More... »

PAGES

12197

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-12398-0

DOI

http://dx.doi.org/10.1038/s41598-017-12398-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091849503

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28939903


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut de Physique de Rennes", 
          "id": "https://www.grid.ac/institutes/grid.461893.1", 
          "name": [
            "CNRS, Institut de Physique de Rennes, D\u00e9partement Mati\u00e8re molle, UMR UR1-CNRS 6251, Universit\u00e9 de Rennes1, F-35042, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rou\u00e8de", 
        "givenName": "Denis", 
        "id": "sg:person.01152756256.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152756256.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Physique de Rennes", 
          "id": "https://www.grid.ac/institutes/grid.461893.1", 
          "name": [
            "CNRS, Institut de Physique de Rennes, D\u00e9partement Mati\u00e8re molle, UMR UR1-CNRS 6251, Universit\u00e9 de Rennes1, F-35042, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schaub", 
        "givenName": "Emmanuel", 
        "id": "sg:person.01320740734.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320740734.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Traitement du Signal et de l'Image", 
          "id": "https://www.grid.ac/institutes/grid.463996.7", 
          "name": [
            "INSERM, Laboratoire Traitement du Signal et de l\u2019Image, UMR UR1-INSERM U642, Universit\u00e9 de Rennes1, F-35042, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bellanger", 
        "givenName": "Jean-Jacques", 
        "id": "sg:person.01030510056.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030510056.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rennes 1", 
          "id": "https://www.grid.ac/institutes/grid.410368.8", 
          "name": [
            "INSERM, UMR1085, IRSET Institut de Recherche sur la Sant\u00e9 l\u2019Environnement et le Travail, SFR Biosit, Universit\u00e9 de Rennes1, F-35043, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ezan", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "id": "sg:person.01350241520.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350241520.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biology Valrose", 
          "id": "https://www.grid.ac/institutes/grid.461605.0", 
          "name": [
            "CNRS, INSERM, Universit\u00e9 de Nice Sophia Antipolis, iBV, 06100, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scimeca", 
        "givenName": "Jean-Claude", 
        "id": "sg:person.0663245055.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663245055.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rennes 1", 
          "id": "https://www.grid.ac/institutes/grid.410368.8", 
          "name": [
            "INSERM, UMR1085, IRSET Institut de Recherche sur la Sant\u00e9 l\u2019Environnement et le Travail, SFR Biosit, Universit\u00e9 de Rennes1, F-35043, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baffet", 
        "givenName": "Georges", 
        "id": "sg:person.0744302277.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744302277.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rennes 1", 
          "id": "https://www.grid.ac/institutes/grid.410368.8", 
          "name": [
            "INSERM, UMR1085, IRSET Institut de Recherche sur la Sant\u00e9 l\u2019Environnement et le Travail, SFR Biosit, Universit\u00e9 de Rennes1, F-35043, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tiaho", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.01063226477.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063226477.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1053/gast.1996.v110.pm8566602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001765102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.23.013309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006052182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2009.07.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008739027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0156734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011503722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013832359", 
          "https://doi.org/10.1038/nbt894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013832359", 
          "https://doi.org/10.1038/nbt894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2009.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014292027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-1606(82)90388-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014294457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.82.9.2804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016066847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.105.071555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021248908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2012.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022844028", 
          "https://doi.org/10.1038/nprot.2012.009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bone.2013.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023171073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-4328(00)00042-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024246211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5320(79)90146-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025807792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5320(74)80044-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025979853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-230x-10-79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025985448", 
          "https://doi.org/10.1186/1471-230x-10-79"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0169(1998)40:1<13::aid-cm2>3.0.co;2-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028811719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.1840200104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029401994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-8278(00)80007-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029997122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2012.10.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031564681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034655204", 
          "https://doi.org/10.1038/nbt899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034655204", 
          "https://doi.org/10.1038/nbt899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2014.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035278593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.1840030118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036501090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.1840030118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036501090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2012.03.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037754605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040709899", 
          "https://doi.org/10.1038/nrm809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040709899", 
          "https://doi.org/10.1038/nrm809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0096043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041296130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsbi.1998.3965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041621502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5320(71)80161-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046844695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02556330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048677157", 
          "https://doi.org/10.1007/bf02556330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02556330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048677157", 
          "https://doi.org/10.1007/bf02556330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2006.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050681821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2559.2010.03609.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051721544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2559.2010.03609.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051721544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crpv.2015.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052775263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9046837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056115803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9046837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056115803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.012286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065186107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.005794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065190075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.005794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065190075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.014859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065194030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.014859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065194030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.019339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065194519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.019339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065194519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2153422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069793045"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Polarization dependence second harmonic generation (P-SHG) microscopy is gaining increase popularity for in situ quantification of fibrillar protein architectures. In this report, we combine P-SHG microscopy, new linear least square (LLS) fitting and modeling to determine and convert the complex second-order non-linear optical anisotropy parameter \u03c1 of several collagen rich tissues into a simple geometric organization of collagen fibrils. Modeling integrates a priori knowledge of polyhelical organization of collagen molecule polymers forming fibrils and bundles of fibrils as well as Poisson photonic shot noise of the detection system. The results, which accurately predict the known sub-microscopic hierarchical organization of collagen fibrils in several tissues, suggest that they can be subdivided into three classes according to their microscopic and macroscopic hierarchical organization of collagen fibrils. They also show, for the first time to our knowledge, intrahepatic spatial discrimination between genuine fibrotic and non-fibrotic vessels. CCl4-treated livers are characterized by an increase in the percentage of fibrotic vessels and their remodeling involves peri-portal compaction and alignment of collagen fibrils that should contribute to portal hypertension. This integrated P-SHG image analysis method is a powerful tool that should open new avenue for the determination of pathophysiological and chemo-mechanical cues impacting collagen fibrils organization.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-12398-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Determination of extracellular matrix collagen fibril architectures and pathological remodeling by polarization dependent second harmonic microscopy", 
    "pagination": "12197", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "890ec8b55be3c7e86b7c9c029c4f44fbbdeb3597da9f53973aac6d200a335f7c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28939903"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-12398-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091849503"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-12398-0", 
      "https://app.dimensions.ai/details/publication/pub.1091849503"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000535.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-12398-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-12398-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-12398-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-12398-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-12398-0'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      21 PREDICATES      66 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-12398-0 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N07444042909a4ca6bbd443670b0f81e5
4 schema:citation sg:pub.10.1007/bf02556330
5 sg:pub.10.1038/nbt894
6 sg:pub.10.1038/nbt899
7 sg:pub.10.1038/nprot.2012.009
8 sg:pub.10.1038/nrm809
9 sg:pub.10.1186/1471-230x-10-79
10 https://doi.org/10.1002/(sici)1097-0169(1998)40:1<13::aid-cm2>3.0.co;2-g
11 https://doi.org/10.1002/hep.1840030118
12 https://doi.org/10.1002/hep.1840200104
13 https://doi.org/10.1006/jsbi.1998.3965
14 https://doi.org/10.1016/0012-1606(82)90388-8
15 https://doi.org/10.1016/j.bone.2013.10.023
16 https://doi.org/10.1016/j.bpj.2012.03.068
17 https://doi.org/10.1016/j.bpj.2012.10.019
18 https://doi.org/10.1016/j.crpv.2015.04.007
19 https://doi.org/10.1016/j.jhep.2009.12.009
20 https://doi.org/10.1016/j.jhep.2014.02.015
21 https://doi.org/10.1016/j.jsb.2009.07.023
22 https://doi.org/10.1016/j.sbi.2006.03.006
23 https://doi.org/10.1016/s0022-5320(71)80161-2
24 https://doi.org/10.1016/s0022-5320(74)80044-4
25 https://doi.org/10.1016/s0022-5320(79)90146-1
26 https://doi.org/10.1016/s0168-8278(00)80007-0
27 https://doi.org/10.1016/s0968-4328(00)00042-1
28 https://doi.org/10.1021/jp9046837
29 https://doi.org/10.1053/gast.1996.v110.pm8566602
30 https://doi.org/10.1073/pnas.82.9.2804
31 https://doi.org/10.1111/j.1365-2559.2010.03609.x
32 https://doi.org/10.1364/oe.15.012286
33 https://doi.org/10.1364/oe.17.005794
34 https://doi.org/10.1364/oe.18.014859
35 https://doi.org/10.1364/oe.18.019339
36 https://doi.org/10.1364/oe.23.013309
37 https://doi.org/10.1371/journal.pone.0096043
38 https://doi.org/10.1371/journal.pone.0156734
39 https://doi.org/10.1529/biophysj.105.071555
40 https://doi.org/10.2307/2153422
41 schema:datePublished 2017-12
42 schema:datePublishedReg 2017-12-01
43 schema:description Polarization dependence second harmonic generation (P-SHG) microscopy is gaining increase popularity for in situ quantification of fibrillar protein architectures. In this report, we combine P-SHG microscopy, new linear least square (LLS) fitting and modeling to determine and convert the complex second-order non-linear optical anisotropy parameter ρ of several collagen rich tissues into a simple geometric organization of collagen fibrils. Modeling integrates a priori knowledge of polyhelical organization of collagen molecule polymers forming fibrils and bundles of fibrils as well as Poisson photonic shot noise of the detection system. The results, which accurately predict the known sub-microscopic hierarchical organization of collagen fibrils in several tissues, suggest that they can be subdivided into three classes according to their microscopic and macroscopic hierarchical organization of collagen fibrils. They also show, for the first time to our knowledge, intrahepatic spatial discrimination between genuine fibrotic and non-fibrotic vessels. CCl<sub>4</sub>-treated livers are characterized by an increase in the percentage of fibrotic vessels and their remodeling involves peri-portal compaction and alignment of collagen fibrils that should contribute to portal hypertension. This integrated P-SHG image analysis method is a powerful tool that should open new avenue for the determination of pathophysiological and chemo-mechanical cues impacting collagen fibrils organization.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N22381fa358084b91b6070756ba8742f0
48 Nb218aad1172246de8fda9c28006c4b65
49 sg:journal.1045337
50 schema:name Determination of extracellular matrix collagen fibril architectures and pathological remodeling by polarization dependent second harmonic microscopy
51 schema:pagination 12197
52 schema:productId N11f3561f753e46d2b850a1cd9a090ad5
53 N477aa109cc834d04805ebc23e65af6be
54 N75c2db8d30d04d3c86754efff4b3b0f2
55 Nebc3be8cb04b4806a69d9012b296ed7b
56 Neeb6e3cdcf3743cfb7a6cf10e41a8d72
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091849503
58 https://doi.org/10.1038/s41598-017-12398-0
59 schema:sdDatePublished 2019-04-10T22:37
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nc70335e2aa1b4702ba5622b16fc3292f
62 schema:url https://www.nature.com/articles/s41598-017-12398-0
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N07444042909a4ca6bbd443670b0f81e5 rdf:first sg:person.01152756256.88
67 rdf:rest Nbc2ce44925ec47758ea93e4ed65ce0cc
68 N11f3561f753e46d2b850a1cd9a090ad5 schema:name doi
69 schema:value 10.1038/s41598-017-12398-0
70 rdf:type schema:PropertyValue
71 N22381fa358084b91b6070756ba8742f0 schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 N477aa109cc834d04805ebc23e65af6be schema:name readcube_id
74 schema:value 890ec8b55be3c7e86b7c9c029c4f44fbbdeb3597da9f53973aac6d200a335f7c
75 rdf:type schema:PropertyValue
76 N75c2db8d30d04d3c86754efff4b3b0f2 schema:name nlm_unique_id
77 schema:value 101563288
78 rdf:type schema:PropertyValue
79 N8ccb32d92a8040a9a120dd1b8a3d334b rdf:first sg:person.0663245055.56
80 rdf:rest Necd197796d6a4ed8afbaefdf51bc6118
81 Nb218aad1172246de8fda9c28006c4b65 schema:volumeNumber 7
82 rdf:type schema:PublicationVolume
83 Nb2f3f205a4e54e03a7aed68518f0745f rdf:first sg:person.01030510056.28
84 rdf:rest Nefa8a230c34b4c3b9257359bfb45292b
85 Nbc2ce44925ec47758ea93e4ed65ce0cc rdf:first sg:person.01320740734.05
86 rdf:rest Nb2f3f205a4e54e03a7aed68518f0745f
87 Nc70335e2aa1b4702ba5622b16fc3292f schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Nebc3be8cb04b4806a69d9012b296ed7b schema:name pubmed_id
90 schema:value 28939903
91 rdf:type schema:PropertyValue
92 Necd197796d6a4ed8afbaefdf51bc6118 rdf:first sg:person.0744302277.42
93 rdf:rest Nf0cc4979da1c4138882729fd862c3611
94 Neeb6e3cdcf3743cfb7a6cf10e41a8d72 schema:name dimensions_id
95 schema:value pub.1091849503
96 rdf:type schema:PropertyValue
97 Nefa8a230c34b4c3b9257359bfb45292b rdf:first sg:person.01350241520.99
98 rdf:rest N8ccb32d92a8040a9a120dd1b8a3d334b
99 Nf0cc4979da1c4138882729fd862c3611 rdf:first sg:person.01063226477.37
100 rdf:rest rdf:nil
101 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
105 schema:name Other Physical Sciences
106 rdf:type schema:DefinedTerm
107 sg:journal.1045337 schema:issn 2045-2322
108 schema:name Scientific Reports
109 rdf:type schema:Periodical
110 sg:person.01030510056.28 schema:affiliation https://www.grid.ac/institutes/grid.463996.7
111 schema:familyName Bellanger
112 schema:givenName Jean-Jacques
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030510056.28
114 rdf:type schema:Person
115 sg:person.01063226477.37 schema:affiliation https://www.grid.ac/institutes/grid.410368.8
116 schema:familyName Tiaho
117 schema:givenName François
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063226477.37
119 rdf:type schema:Person
120 sg:person.01152756256.88 schema:affiliation https://www.grid.ac/institutes/grid.461893.1
121 schema:familyName Rouède
122 schema:givenName Denis
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152756256.88
124 rdf:type schema:Person
125 sg:person.01320740734.05 schema:affiliation https://www.grid.ac/institutes/grid.461893.1
126 schema:familyName Schaub
127 schema:givenName Emmanuel
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320740734.05
129 rdf:type schema:Person
130 sg:person.01350241520.99 schema:affiliation https://www.grid.ac/institutes/grid.410368.8
131 schema:familyName Ezan
132 schema:givenName Frédéric
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350241520.99
134 rdf:type schema:Person
135 sg:person.0663245055.56 schema:affiliation https://www.grid.ac/institutes/grid.461605.0
136 schema:familyName Scimeca
137 schema:givenName Jean-Claude
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663245055.56
139 rdf:type schema:Person
140 sg:person.0744302277.42 schema:affiliation https://www.grid.ac/institutes/grid.410368.8
141 schema:familyName Baffet
142 schema:givenName Georges
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744302277.42
144 rdf:type schema:Person
145 sg:pub.10.1007/bf02556330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048677157
146 https://doi.org/10.1007/bf02556330
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nbt894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013832359
149 https://doi.org/10.1038/nbt894
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nbt899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034655204
152 https://doi.org/10.1038/nbt899
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nprot.2012.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022844028
155 https://doi.org/10.1038/nprot.2012.009
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nrm809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040709899
158 https://doi.org/10.1038/nrm809
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/1471-230x-10-79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025985448
161 https://doi.org/10.1186/1471-230x-10-79
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/(sici)1097-0169(1998)40:1<13::aid-cm2>3.0.co;2-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1028811719
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/hep.1840030118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036501090
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/hep.1840200104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029401994
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1006/jsbi.1998.3965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041621502
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/0012-1606(82)90388-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014294457
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.bone.2013.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023171073
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.bpj.2012.03.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037754605
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.bpj.2012.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031564681
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.crpv.2015.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052775263
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.jhep.2009.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014292027
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.jhep.2014.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035278593
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.jsb.2009.07.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008739027
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.sbi.2006.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050681821
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0022-5320(71)80161-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046844695
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s0022-5320(74)80044-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025979853
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s0022-5320(79)90146-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025807792
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s0168-8278(00)80007-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029997122
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/s0968-4328(00)00042-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024246211
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/jp9046837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056115803
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1053/gast.1996.v110.pm8566602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001765102
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1073/pnas.82.9.2804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016066847
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.1365-2559.2010.03609.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051721544
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1364/oe.15.012286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065186107
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1364/oe.17.005794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065190075
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1364/oe.18.014859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065194030
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1364/oe.18.019339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065194519
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1364/oe.23.013309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006052182
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1371/journal.pone.0096043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041296130
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1371/journal.pone.0156734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011503722
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1529/biophysj.105.071555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021248908
222 rdf:type schema:CreativeWork
223 https://doi.org/10.2307/2153422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069793045
224 rdf:type schema:CreativeWork
225 https://www.grid.ac/institutes/grid.410368.8 schema:alternateName University of Rennes 1
226 schema:name INSERM, UMR1085, IRSET Institut de Recherche sur la Santé l’Environnement et le Travail, SFR Biosit, Université de Rennes1, F-35043, Rennes, France
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.461605.0 schema:alternateName Institute of Biology Valrose
229 schema:name CNRS, INSERM, Université de Nice Sophia Antipolis, iBV, 06100, Nice, France
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.461893.1 schema:alternateName Institut de Physique de Rennes
232 schema:name CNRS, Institut de Physique de Rennes, Département Matière molle, UMR UR1-CNRS 6251, Université de Rennes1, F-35042, Rennes, France
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.463996.7 schema:alternateName Laboratoire Traitement du Signal et de l'Image
235 schema:name INSERM, Laboratoire Traitement du Signal et de l’Image, UMR UR1-INSERM U642, Université de Rennes1, F-35042, Rennes, France
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...