Determination of extracellular matrix collagen fibril architectures and pathological remodeling by polarization dependent second harmonic microscopy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Denis Rouède, Emmanuel Schaub, Jean-Jacques Bellanger, Frédéric Ezan, Jean-Claude Scimeca, Georges Baffet, François Tiaho

ABSTRACT

Polarization dependence second harmonic generation (P-SHG) microscopy is gaining increase popularity for in situ quantification of fibrillar protein architectures. In this report, we combine P-SHG microscopy, new linear least square (LLS) fitting and modeling to determine and convert the complex second-order non-linear optical anisotropy parameter ρ of several collagen rich tissues into a simple geometric organization of collagen fibrils. Modeling integrates a priori knowledge of polyhelical organization of collagen molecule polymers forming fibrils and bundles of fibrils as well as Poisson photonic shot noise of the detection system. The results, which accurately predict the known sub-microscopic hierarchical organization of collagen fibrils in several tissues, suggest that they can be subdivided into three classes according to their microscopic and macroscopic hierarchical organization of collagen fibrils. They also show, for the first time to our knowledge, intrahepatic spatial discrimination between genuine fibrotic and non-fibrotic vessels. CCl4-treated livers are characterized by an increase in the percentage of fibrotic vessels and their remodeling involves peri-portal compaction and alignment of collagen fibrils that should contribute to portal hypertension. This integrated P-SHG image analysis method is a powerful tool that should open new avenue for the determination of pathophysiological and chemo-mechanical cues impacting collagen fibrils organization. More... »

PAGES

12197

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-12398-0

DOI

http://dx.doi.org/10.1038/s41598-017-12398-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091849503

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28939903


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut de Physique de Rennes", 
          "id": "https://www.grid.ac/institutes/grid.461893.1", 
          "name": [
            "CNRS, Institut de Physique de Rennes, D\u00e9partement Mati\u00e8re molle, UMR UR1-CNRS 6251, Universit\u00e9 de Rennes1, F-35042, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rou\u00e8de", 
        "givenName": "Denis", 
        "id": "sg:person.01152756256.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152756256.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Physique de Rennes", 
          "id": "https://www.grid.ac/institutes/grid.461893.1", 
          "name": [
            "CNRS, Institut de Physique de Rennes, D\u00e9partement Mati\u00e8re molle, UMR UR1-CNRS 6251, Universit\u00e9 de Rennes1, F-35042, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schaub", 
        "givenName": "Emmanuel", 
        "id": "sg:person.01320740734.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320740734.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Traitement du Signal et de l'Image", 
          "id": "https://www.grid.ac/institutes/grid.463996.7", 
          "name": [
            "INSERM, Laboratoire Traitement du Signal et de l\u2019Image, UMR UR1-INSERM U642, Universit\u00e9 de Rennes1, F-35042, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bellanger", 
        "givenName": "Jean-Jacques", 
        "id": "sg:person.01030510056.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030510056.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rennes 1", 
          "id": "https://www.grid.ac/institutes/grid.410368.8", 
          "name": [
            "INSERM, UMR1085, IRSET Institut de Recherche sur la Sant\u00e9 l\u2019Environnement et le Travail, SFR Biosit, Universit\u00e9 de Rennes1, F-35043, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ezan", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "id": "sg:person.01350241520.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350241520.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biology Valrose", 
          "id": "https://www.grid.ac/institutes/grid.461605.0", 
          "name": [
            "CNRS, INSERM, Universit\u00e9 de Nice Sophia Antipolis, iBV, 06100, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scimeca", 
        "givenName": "Jean-Claude", 
        "id": "sg:person.0663245055.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663245055.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rennes 1", 
          "id": "https://www.grid.ac/institutes/grid.410368.8", 
          "name": [
            "INSERM, UMR1085, IRSET Institut de Recherche sur la Sant\u00e9 l\u2019Environnement et le Travail, SFR Biosit, Universit\u00e9 de Rennes1, F-35043, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baffet", 
        "givenName": "Georges", 
        "id": "sg:person.0744302277.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744302277.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rennes 1", 
          "id": "https://www.grid.ac/institutes/grid.410368.8", 
          "name": [
            "INSERM, UMR1085, IRSET Institut de Recherche sur la Sant\u00e9 l\u2019Environnement et le Travail, SFR Biosit, Universit\u00e9 de Rennes1, F-35043, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tiaho", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.01063226477.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063226477.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1053/gast.1996.v110.pm8566602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001765102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.23.013309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006052182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2009.07.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008739027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0156734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011503722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013832359", 
          "https://doi.org/10.1038/nbt894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013832359", 
          "https://doi.org/10.1038/nbt894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2009.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014292027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-1606(82)90388-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014294457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.82.9.2804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016066847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.105.071555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021248908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2012.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022844028", 
          "https://doi.org/10.1038/nprot.2012.009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bone.2013.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023171073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-4328(00)00042-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024246211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5320(79)90146-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025807792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5320(74)80044-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025979853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-230x-10-79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025985448", 
          "https://doi.org/10.1186/1471-230x-10-79"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0169(1998)40:1<13::aid-cm2>3.0.co;2-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028811719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.1840200104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029401994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-8278(00)80007-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029997122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2012.10.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031564681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034655204", 
          "https://doi.org/10.1038/nbt899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034655204", 
          "https://doi.org/10.1038/nbt899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2014.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035278593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.1840030118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036501090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.1840030118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036501090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2012.03.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037754605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040709899", 
          "https://doi.org/10.1038/nrm809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040709899", 
          "https://doi.org/10.1038/nrm809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0096043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041296130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsbi.1998.3965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041621502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5320(71)80161-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046844695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02556330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048677157", 
          "https://doi.org/10.1007/bf02556330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02556330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048677157", 
          "https://doi.org/10.1007/bf02556330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2006.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050681821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2559.2010.03609.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051721544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2559.2010.03609.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051721544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crpv.2015.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052775263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9046837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056115803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9046837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056115803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.012286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065186107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.005794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065190075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.005794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065190075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.014859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065194030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.014859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065194030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.019339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065194519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.019339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065194519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2153422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069793045"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Polarization dependence second harmonic generation (P-SHG) microscopy is gaining increase popularity for in situ quantification of fibrillar protein architectures. In this report, we combine P-SHG microscopy, new linear least square (LLS) fitting and modeling to determine and convert the complex second-order non-linear optical anisotropy parameter \u03c1 of several collagen rich tissues into a simple geometric organization of collagen fibrils. Modeling integrates a priori knowledge of polyhelical organization of collagen molecule polymers forming fibrils and bundles of fibrils as well as Poisson photonic shot noise of the detection system. The results, which accurately predict the known sub-microscopic hierarchical organization of collagen fibrils in several tissues, suggest that they can be subdivided into three classes according to their microscopic and macroscopic hierarchical organization of collagen fibrils. They also show, for the first time to our knowledge, intrahepatic spatial discrimination between genuine fibrotic and non-fibrotic vessels. CCl4-treated livers are characterized by an increase in the percentage of fibrotic vessels and their remodeling involves peri-portal compaction and alignment of collagen fibrils that should contribute to portal hypertension. This integrated P-SHG image analysis method is a powerful tool that should open new avenue for the determination of pathophysiological and chemo-mechanical cues impacting collagen fibrils organization.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-12398-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Determination of extracellular matrix collagen fibril architectures and pathological remodeling by polarization dependent second harmonic microscopy", 
    "pagination": "12197", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "890ec8b55be3c7e86b7c9c029c4f44fbbdeb3597da9f53973aac6d200a335f7c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28939903"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-12398-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091849503"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-12398-0", 
      "https://app.dimensions.ai/details/publication/pub.1091849503"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000535.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-12398-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-12398-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-12398-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-12398-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-12398-0'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      21 PREDICATES      66 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-12398-0 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N5d7be4157d6e473facc493e84aee1702
4 schema:citation sg:pub.10.1007/bf02556330
5 sg:pub.10.1038/nbt894
6 sg:pub.10.1038/nbt899
7 sg:pub.10.1038/nprot.2012.009
8 sg:pub.10.1038/nrm809
9 sg:pub.10.1186/1471-230x-10-79
10 https://doi.org/10.1002/(sici)1097-0169(1998)40:1<13::aid-cm2>3.0.co;2-g
11 https://doi.org/10.1002/hep.1840030118
12 https://doi.org/10.1002/hep.1840200104
13 https://doi.org/10.1006/jsbi.1998.3965
14 https://doi.org/10.1016/0012-1606(82)90388-8
15 https://doi.org/10.1016/j.bone.2013.10.023
16 https://doi.org/10.1016/j.bpj.2012.03.068
17 https://doi.org/10.1016/j.bpj.2012.10.019
18 https://doi.org/10.1016/j.crpv.2015.04.007
19 https://doi.org/10.1016/j.jhep.2009.12.009
20 https://doi.org/10.1016/j.jhep.2014.02.015
21 https://doi.org/10.1016/j.jsb.2009.07.023
22 https://doi.org/10.1016/j.sbi.2006.03.006
23 https://doi.org/10.1016/s0022-5320(71)80161-2
24 https://doi.org/10.1016/s0022-5320(74)80044-4
25 https://doi.org/10.1016/s0022-5320(79)90146-1
26 https://doi.org/10.1016/s0168-8278(00)80007-0
27 https://doi.org/10.1016/s0968-4328(00)00042-1
28 https://doi.org/10.1021/jp9046837
29 https://doi.org/10.1053/gast.1996.v110.pm8566602
30 https://doi.org/10.1073/pnas.82.9.2804
31 https://doi.org/10.1111/j.1365-2559.2010.03609.x
32 https://doi.org/10.1364/oe.15.012286
33 https://doi.org/10.1364/oe.17.005794
34 https://doi.org/10.1364/oe.18.014859
35 https://doi.org/10.1364/oe.18.019339
36 https://doi.org/10.1364/oe.23.013309
37 https://doi.org/10.1371/journal.pone.0096043
38 https://doi.org/10.1371/journal.pone.0156734
39 https://doi.org/10.1529/biophysj.105.071555
40 https://doi.org/10.2307/2153422
41 schema:datePublished 2017-12
42 schema:datePublishedReg 2017-12-01
43 schema:description Polarization dependence second harmonic generation (P-SHG) microscopy is gaining increase popularity for in situ quantification of fibrillar protein architectures. In this report, we combine P-SHG microscopy, new linear least square (LLS) fitting and modeling to determine and convert the complex second-order non-linear optical anisotropy parameter ρ of several collagen rich tissues into a simple geometric organization of collagen fibrils. Modeling integrates a priori knowledge of polyhelical organization of collagen molecule polymers forming fibrils and bundles of fibrils as well as Poisson photonic shot noise of the detection system. The results, which accurately predict the known sub-microscopic hierarchical organization of collagen fibrils in several tissues, suggest that they can be subdivided into three classes according to their microscopic and macroscopic hierarchical organization of collagen fibrils. They also show, for the first time to our knowledge, intrahepatic spatial discrimination between genuine fibrotic and non-fibrotic vessels. CCl<sub>4</sub>-treated livers are characterized by an increase in the percentage of fibrotic vessels and their remodeling involves peri-portal compaction and alignment of collagen fibrils that should contribute to portal hypertension. This integrated P-SHG image analysis method is a powerful tool that should open new avenue for the determination of pathophysiological and chemo-mechanical cues impacting collagen fibrils organization.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N292a569008494961b28dc7b80072e98f
48 Nfdd53720b74d4ac0a5388719b34bce0b
49 sg:journal.1045337
50 schema:name Determination of extracellular matrix collagen fibril architectures and pathological remodeling by polarization dependent second harmonic microscopy
51 schema:pagination 12197
52 schema:productId N25a21acacfc4474ba722a70c0526a847
53 N60ac603e33f14f5d9474076a01c6f090
54 N614be37a1d4f4d21b46da7306e4fc06b
55 N6d6fb57c357c4f0086637b1ed6dad68f
56 N9da64a6aa2d544b2ba9c934a03630690
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091849503
58 https://doi.org/10.1038/s41598-017-12398-0
59 schema:sdDatePublished 2019-04-10T22:37
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Na406c0f07c8a4725ac648a7f8a363935
62 schema:url https://www.nature.com/articles/s41598-017-12398-0
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N1b247ae14562489aa2a4be9c74b1c1bf rdf:first sg:person.0663245055.56
67 rdf:rest N853ebf8dd18c423d9ea2c72e3caefbf1
68 N25a21acacfc4474ba722a70c0526a847 schema:name readcube_id
69 schema:value 890ec8b55be3c7e86b7c9c029c4f44fbbdeb3597da9f53973aac6d200a335f7c
70 rdf:type schema:PropertyValue
71 N292a569008494961b28dc7b80072e98f schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 N2f87ca4e4b59452a86e8acdbad21481b rdf:first sg:person.01063226477.37
74 rdf:rest rdf:nil
75 N530dac2e982541d8b39b7aec22822b35 rdf:first sg:person.01350241520.99
76 rdf:rest N1b247ae14562489aa2a4be9c74b1c1bf
77 N5d7be4157d6e473facc493e84aee1702 rdf:first sg:person.01152756256.88
78 rdf:rest Nb9ffb91c42e74d068bc2b4f73549a8f6
79 N60ac603e33f14f5d9474076a01c6f090 schema:name pubmed_id
80 schema:value 28939903
81 rdf:type schema:PropertyValue
82 N614be37a1d4f4d21b46da7306e4fc06b schema:name dimensions_id
83 schema:value pub.1091849503
84 rdf:type schema:PropertyValue
85 N6d6fb57c357c4f0086637b1ed6dad68f schema:name doi
86 schema:value 10.1038/s41598-017-12398-0
87 rdf:type schema:PropertyValue
88 N853ebf8dd18c423d9ea2c72e3caefbf1 rdf:first sg:person.0744302277.42
89 rdf:rest N2f87ca4e4b59452a86e8acdbad21481b
90 N93b311885aed4f34a54fc52f78c665f1 rdf:first sg:person.01030510056.28
91 rdf:rest N530dac2e982541d8b39b7aec22822b35
92 N9da64a6aa2d544b2ba9c934a03630690 schema:name nlm_unique_id
93 schema:value 101563288
94 rdf:type schema:PropertyValue
95 Na406c0f07c8a4725ac648a7f8a363935 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nb9ffb91c42e74d068bc2b4f73549a8f6 rdf:first sg:person.01320740734.05
98 rdf:rest N93b311885aed4f34a54fc52f78c665f1
99 Nfdd53720b74d4ac0a5388719b34bce0b schema:volumeNumber 7
100 rdf:type schema:PublicationVolume
101 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
105 schema:name Other Physical Sciences
106 rdf:type schema:DefinedTerm
107 sg:journal.1045337 schema:issn 2045-2322
108 schema:name Scientific Reports
109 rdf:type schema:Periodical
110 sg:person.01030510056.28 schema:affiliation https://www.grid.ac/institutes/grid.463996.7
111 schema:familyName Bellanger
112 schema:givenName Jean-Jacques
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030510056.28
114 rdf:type schema:Person
115 sg:person.01063226477.37 schema:affiliation https://www.grid.ac/institutes/grid.410368.8
116 schema:familyName Tiaho
117 schema:givenName François
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063226477.37
119 rdf:type schema:Person
120 sg:person.01152756256.88 schema:affiliation https://www.grid.ac/institutes/grid.461893.1
121 schema:familyName Rouède
122 schema:givenName Denis
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152756256.88
124 rdf:type schema:Person
125 sg:person.01320740734.05 schema:affiliation https://www.grid.ac/institutes/grid.461893.1
126 schema:familyName Schaub
127 schema:givenName Emmanuel
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320740734.05
129 rdf:type schema:Person
130 sg:person.01350241520.99 schema:affiliation https://www.grid.ac/institutes/grid.410368.8
131 schema:familyName Ezan
132 schema:givenName Frédéric
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350241520.99
134 rdf:type schema:Person
135 sg:person.0663245055.56 schema:affiliation https://www.grid.ac/institutes/grid.461605.0
136 schema:familyName Scimeca
137 schema:givenName Jean-Claude
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663245055.56
139 rdf:type schema:Person
140 sg:person.0744302277.42 schema:affiliation https://www.grid.ac/institutes/grid.410368.8
141 schema:familyName Baffet
142 schema:givenName Georges
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744302277.42
144 rdf:type schema:Person
145 sg:pub.10.1007/bf02556330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048677157
146 https://doi.org/10.1007/bf02556330
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nbt894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013832359
149 https://doi.org/10.1038/nbt894
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nbt899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034655204
152 https://doi.org/10.1038/nbt899
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nprot.2012.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022844028
155 https://doi.org/10.1038/nprot.2012.009
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nrm809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040709899
158 https://doi.org/10.1038/nrm809
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/1471-230x-10-79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025985448
161 https://doi.org/10.1186/1471-230x-10-79
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/(sici)1097-0169(1998)40:1<13::aid-cm2>3.0.co;2-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1028811719
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/hep.1840030118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036501090
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/hep.1840200104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029401994
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1006/jsbi.1998.3965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041621502
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/0012-1606(82)90388-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014294457
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.bone.2013.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023171073
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.bpj.2012.03.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037754605
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.bpj.2012.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031564681
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.crpv.2015.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052775263
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.jhep.2009.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014292027
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.jhep.2014.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035278593
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.jsb.2009.07.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008739027
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.sbi.2006.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050681821
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0022-5320(71)80161-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046844695
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s0022-5320(74)80044-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025979853
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s0022-5320(79)90146-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025807792
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s0168-8278(00)80007-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029997122
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/s0968-4328(00)00042-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024246211
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/jp9046837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056115803
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1053/gast.1996.v110.pm8566602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001765102
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1073/pnas.82.9.2804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016066847
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.1365-2559.2010.03609.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051721544
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1364/oe.15.012286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065186107
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1364/oe.17.005794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065190075
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1364/oe.18.014859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065194030
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1364/oe.18.019339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065194519
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1364/oe.23.013309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006052182
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1371/journal.pone.0096043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041296130
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1371/journal.pone.0156734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011503722
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1529/biophysj.105.071555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021248908
222 rdf:type schema:CreativeWork
223 https://doi.org/10.2307/2153422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069793045
224 rdf:type schema:CreativeWork
225 https://www.grid.ac/institutes/grid.410368.8 schema:alternateName University of Rennes 1
226 schema:name INSERM, UMR1085, IRSET Institut de Recherche sur la Santé l’Environnement et le Travail, SFR Biosit, Université de Rennes1, F-35043, Rennes, France
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.461605.0 schema:alternateName Institute of Biology Valrose
229 schema:name CNRS, INSERM, Université de Nice Sophia Antipolis, iBV, 06100, Nice, France
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.461893.1 schema:alternateName Institut de Physique de Rennes
232 schema:name CNRS, Institut de Physique de Rennes, Département Matière molle, UMR UR1-CNRS 6251, Université de Rennes1, F-35042, Rennes, France
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.463996.7 schema:alternateName Laboratoire Traitement du Signal et de l'Image
235 schema:name INSERM, Laboratoire Traitement du Signal et de l’Image, UMR UR1-INSERM U642, Université de Rennes1, F-35042, Rennes, France
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...