Spectral control of elastic dynamics in metallic nano-cavities View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Henning Ulrichs, Dennis Meyer, Florian Döring, Christian Eberl, Hans-Ulrich Krebs

ABSTRACT

We show how the elastic response of metallic nano-cavities can be tailored by tuning the interplay with an underlying phononic superlattice. In particular, we exploit ultrafast optical excitation in order to address a resonance mode in a tungsten thin film, grown on top of a periodic MgO/ZrO2 multilayer. Setting up a simple theoretical model, we can explain our findings by the coupling of the resonance in the tungsten to an evanescent surface mode of the superlattice. To demonstrate a second potential benefit of our findings besides characterization of elastic properties of multilayer samples, we show by micromagnetic simulation how a similar structure can be utilized for magneto-elastic excitation of exchange-dominated spin waves. More... »

PAGES

10600

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-11099-y

DOI

http://dx.doi.org/10.1038/s41598-017-11099-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091456871

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28878294


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "I. Physical Institute, Georg-August University of G\u00f6ttingen, Friedrich-Hund-Platz 1, 37077, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ulrichs", 
        "givenName": "Henning", 
        "id": "sg:person.01241436062.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241436062.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "I. Physical Institute, Georg-August University of G\u00f6ttingen, Friedrich-Hund-Platz 1, 37077, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meyer", 
        "givenName": "Dennis", 
        "id": "sg:person.010716201157.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716201157.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paul Scherrer Institute", 
          "id": "https://www.grid.ac/institutes/grid.5991.4", 
          "name": [
            "Institute of Materials Physics, Georg-August University of G\u00f6ttingen, Friedrich-Hund-Platz 1, 37077, G\u00f6ttingen, Germany", 
            "Laboratory of Micro and Nanotechnology, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u00f6ring", 
        "givenName": "Florian", 
        "id": "sg:person.011115045521.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011115045521.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physikalisch-Technische Bundesanstalt", 
          "id": "https://www.grid.ac/institutes/grid.4764.1", 
          "name": [
            "Institute of Materials Physics, Georg-August University of G\u00f6ttingen, Friedrich-Hund-Platz 1, 37077, G\u00f6ttingen, Germany", 
            "Physikalisch Technische Bundesanstalt, Bundesallee 100, 38116, Braunschweig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eberl", 
        "givenName": "Christian", 
        "id": "sg:person.012510006521.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012510006521.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Institute of Materials Physics, Georg-August University of G\u00f6ttingen, Friedrich-Hund-Platz 1, 37077, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krebs", 
        "givenName": "Hans-Ulrich", 
        "id": "sg:person.014265454064.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014265454064.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00339-016-0405-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005052276", 
          "https://doi.org/10.1007/s00339-016-0405-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-016-0405-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005052276", 
          "https://doi.org/10.1007/s00339-016-0405-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005657326", 
          "https://doi.org/10.1038/nmat3826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009954157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009954157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2191730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010560800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.267203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011833715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.267203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011833715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/43/26/264001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011846592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/43/26/264001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011846592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physb.2004.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015869732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4899186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020462729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.176601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023010282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.176601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023010282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.227402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026531384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.227402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026531384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4526(95)00852-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036979081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045051134", 
          "https://doi.org/10.1038/nature12608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultras.2014.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046502118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.177208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046764316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.177208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046764316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultras.2014.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048190649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b02342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055121636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.121476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057685645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1848355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057827439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3253712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057925297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/19/35/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058963438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/18/9/092002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059137688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.1711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.1711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.6066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060547770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.6066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060547770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.14506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.14506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.8105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.8105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.15858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060595490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.15858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060595490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.092302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060604266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.092302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060604266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.094102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060611128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.094102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060611128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.020404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060646372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.020404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060646372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.024415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060651126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.024415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060651126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.187402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.187402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.215504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.215504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.115502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.115502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4961352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098521017"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "We show how the elastic response of metallic nano-cavities can be tailored by tuning the interplay with an underlying phononic superlattice. In particular, we exploit ultrafast optical excitation in order to address a resonance mode in a tungsten thin film, grown on top of a periodic MgO/ZrO2 multilayer. Setting up a simple theoretical model, we can explain our findings by the coupling of the resonance in the tungsten to an evanescent surface mode of the superlattice. To demonstrate a second potential benefit of our findings besides characterization of elastic properties of multilayer samples, we show by micromagnetic simulation how a similar structure can be utilized for magneto-elastic excitation of exchange-dominated spin waves.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-11099-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Spectral control of elastic dynamics in metallic nano-cavities", 
    "pagination": "10600", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e94c662f073bbd79fab064ea4d7ca30859ffc05d1cdb1c0258193f8286a1d840"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28878294"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-11099-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091456871"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-11099-y", 
      "https://app.dimensions.ai/details/publication/pub.1091456871"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130820_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-11099-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-11099-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-11099-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-11099-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-11099-y'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-11099-y schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc9e61a2b5d6f4632a7fd4c569fc08a9e
4 schema:citation sg:pub.10.1007/s00339-016-0405-0
5 sg:pub.10.1038/nature12608
6 sg:pub.10.1038/nmat3826
7 https://doi.org/10.1016/0921-4526(95)00852-7
8 https://doi.org/10.1016/j.physb.2004.06.009
9 https://doi.org/10.1016/j.ultras.2014.06.004
10 https://doi.org/10.1016/j.ultras.2014.06.005
11 https://doi.org/10.1021/acs.nanolett.6b02342
12 https://doi.org/10.1063/1.121476
13 https://doi.org/10.1063/1.1848355
14 https://doi.org/10.1063/1.2191730
15 https://doi.org/10.1063/1.3253712
16 https://doi.org/10.1063/1.4899186
17 https://doi.org/10.1063/1.4961352
18 https://doi.org/10.1088/0022-3719/19/35/014
19 https://doi.org/10.1088/0022-3727/43/26/264001
20 https://doi.org/10.1088/1367-2630/18/9/092002
21 https://doi.org/10.1103/physrevb.28.1711
22 https://doi.org/10.1103/physrevb.38.6066
23 https://doi.org/10.1103/physrevb.50.14506
24 https://doi.org/10.1103/physrevb.59.8105
25 https://doi.org/10.1103/physrevb.61.15858
26 https://doi.org/10.1103/physrevb.66.092302
27 https://doi.org/10.1103/physrevb.70.094102
28 https://doi.org/10.1103/physrevb.92.020404
29 https://doi.org/10.1103/physrevb.94.024415
30 https://doi.org/10.1103/physrevlett.101.267203
31 https://doi.org/10.1103/physrevlett.104.187402
32 https://doi.org/10.1103/physrevlett.108.176601
33 https://doi.org/10.1103/physrevlett.53.989
34 https://doi.org/10.1103/physrevlett.84.927
35 https://doi.org/10.1103/physrevlett.89.227402
36 https://doi.org/10.1103/physrevlett.96.215504
37 https://doi.org/10.1103/physrevlett.97.115502
38 https://doi.org/10.1103/physrevlett.99.177208
39 schema:datePublished 2017-12
40 schema:datePublishedReg 2017-12-01
41 schema:description We show how the elastic response of metallic nano-cavities can be tailored by tuning the interplay with an underlying phononic superlattice. In particular, we exploit ultrafast optical excitation in order to address a resonance mode in a tungsten thin film, grown on top of a periodic MgO/ZrO<sub>2</sub> multilayer. Setting up a simple theoretical model, we can explain our findings by the coupling of the resonance in the tungsten to an evanescent surface mode of the superlattice. To demonstrate a second potential benefit of our findings besides characterization of elastic properties of multilayer samples, we show by micromagnetic simulation how a similar structure can be utilized for magneto-elastic excitation of exchange-dominated spin waves.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N0f9c63ca1272416da10d3a755ec1561f
46 N3d97ddbcc2784272b5d16f051f8c9d6b
47 sg:journal.1045337
48 schema:name Spectral control of elastic dynamics in metallic nano-cavities
49 schema:pagination 10600
50 schema:productId N102d4992d98c4d06a6c624280e27ab08
51 N412d193b763e4a0f9a1e8ee29346b21c
52 N62af8035258643ad9c512868c1b13787
53 Nac8a179c5ee144c1a18c81336a0379d2
54 Ne5c9e585dfe44566a47fe954c5359060
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091456871
56 https://doi.org/10.1038/s41598-017-11099-y
57 schema:sdDatePublished 2019-04-11T13:58
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N8b34fd2662594349b2dcb39e585ce862
60 schema:url https://www.nature.com/articles/s41598-017-11099-y
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N0f9c63ca1272416da10d3a755ec1561f schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 N102d4992d98c4d06a6c624280e27ab08 schema:name nlm_unique_id
67 schema:value 101563288
68 rdf:type schema:PropertyValue
69 N11c2780ae82f40c99fcf2ec0bdc8bbb9 rdf:first sg:person.012510006521.37
70 rdf:rest N4013218aafb24d88a354ec6d73e8ff0d
71 N3d97ddbcc2784272b5d16f051f8c9d6b schema:volumeNumber 7
72 rdf:type schema:PublicationVolume
73 N4013218aafb24d88a354ec6d73e8ff0d rdf:first sg:person.014265454064.84
74 rdf:rest rdf:nil
75 N412d193b763e4a0f9a1e8ee29346b21c schema:name readcube_id
76 schema:value e94c662f073bbd79fab064ea4d7ca30859ffc05d1cdb1c0258193f8286a1d840
77 rdf:type schema:PropertyValue
78 N62af8035258643ad9c512868c1b13787 schema:name dimensions_id
79 schema:value pub.1091456871
80 rdf:type schema:PropertyValue
81 N8b34fd2662594349b2dcb39e585ce862 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Na2107cf27dc348e1a713d802603b4130 rdf:first sg:person.011115045521.26
84 rdf:rest N11c2780ae82f40c99fcf2ec0bdc8bbb9
85 Nac8a179c5ee144c1a18c81336a0379d2 schema:name doi
86 schema:value 10.1038/s41598-017-11099-y
87 rdf:type schema:PropertyValue
88 Nc9e61a2b5d6f4632a7fd4c569fc08a9e rdf:first sg:person.01241436062.30
89 rdf:rest Ne6c42d5c91624397a57507e979475556
90 Ne5c9e585dfe44566a47fe954c5359060 schema:name pubmed_id
91 schema:value 28878294
92 rdf:type schema:PropertyValue
93 Ne6c42d5c91624397a57507e979475556 rdf:first sg:person.010716201157.32
94 rdf:rest Na2107cf27dc348e1a713d802603b4130
95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
96 schema:name Engineering
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
99 schema:name Materials Engineering
100 rdf:type schema:DefinedTerm
101 sg:journal.1045337 schema:issn 2045-2322
102 schema:name Scientific Reports
103 rdf:type schema:Periodical
104 sg:person.010716201157.32 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
105 schema:familyName Meyer
106 schema:givenName Dennis
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716201157.32
108 rdf:type schema:Person
109 sg:person.011115045521.26 schema:affiliation https://www.grid.ac/institutes/grid.5991.4
110 schema:familyName Döring
111 schema:givenName Florian
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011115045521.26
113 rdf:type schema:Person
114 sg:person.01241436062.30 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
115 schema:familyName Ulrichs
116 schema:givenName Henning
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241436062.30
118 rdf:type schema:Person
119 sg:person.012510006521.37 schema:affiliation https://www.grid.ac/institutes/grid.4764.1
120 schema:familyName Eberl
121 schema:givenName Christian
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012510006521.37
123 rdf:type schema:Person
124 sg:person.014265454064.84 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
125 schema:familyName Krebs
126 schema:givenName Hans-Ulrich
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014265454064.84
128 rdf:type schema:Person
129 sg:pub.10.1007/s00339-016-0405-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005052276
130 https://doi.org/10.1007/s00339-016-0405-0
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nature12608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045051134
133 https://doi.org/10.1038/nature12608
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nmat3826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005657326
136 https://doi.org/10.1038/nmat3826
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0921-4526(95)00852-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036979081
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.physb.2004.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015869732
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ultras.2014.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048190649
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ultras.2014.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046502118
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1021/acs.nanolett.6b02342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121636
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1063/1.121476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057685645
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1063/1.1848355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057827439
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1063/1.2191730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010560800
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.3253712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057925297
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.4899186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020462729
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1063/1.4961352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098521017
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1088/0022-3719/19/35/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058963438
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1088/0022-3727/43/26/264001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011846592
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1088/1367-2630/18/9/092002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059137688
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevb.28.1711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060532971
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevb.38.6066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060547770
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevb.50.14506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060572939
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevb.59.8105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060592059
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevb.61.15858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060595490
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevb.66.092302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060604266
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevb.70.094102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060611128
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevb.92.020404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060646372
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.94.024415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060651126
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.101.267203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011833715
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevlett.104.187402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756927
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.108.176601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023010282
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.53.989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060791088
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.84.927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009954157
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.89.227402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026531384
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.96.215504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832333
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevlett.97.115502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832835
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.99.177208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046764316
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.4764.1 schema:alternateName Physikalisch-Technische Bundesanstalt
203 schema:name Institute of Materials Physics, Georg-August University of Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
204 Physikalisch Technische Bundesanstalt, Bundesallee 100, 38116, Braunschweig, Germany
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.5991.4 schema:alternateName Paul Scherrer Institute
207 schema:name Institute of Materials Physics, Georg-August University of Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
208 Laboratory of Micro and Nanotechnology, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.7450.6 schema:alternateName University of Göttingen
211 schema:name I. Physical Institute, Georg-August University of Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
212 Institute of Materials Physics, Georg-August University of Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...