Biochips for Direct Detection and Identification of Bacteria in Blood Culture-Like Conditions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-08-25

AUTHORS

V. Templier, T. Livache, S. Boisset, M. Maurin, S. Slimani, R. Mathey, Y. Roupioz

ABSTRACT

Bloodstream bacterial infections are life-threatening conditions necessitating prompt medical care. Rapid pathogen identification is essential for early setting of the best anti-infectious therapy. However, the bacterial load in blood samples from patients with bacteremia is too low and under the limit of detection of most methods for direct identification of bacteria. Therefore, a preliminary step enabling the bacterial multiplication is required. To do so, blood cultures still remain the gold standard before bacteremia diagnosis. Bacterial identification is then usually obtained within 24 to 48 hours -at least- after blood sampling. In the present work, the fast and direct identification of bacteria present in blood cultures is completed in less than 12 hours, during bacterial growth, using an antibody microarray coupled to a Surface Plasmon Resonance imager (SPRi). Less than one bacterium (Salmonella enterica serovar Enteritidis) per milliliter of blood sample is successfully detected and identified in blood volumes similar to blood tests collected in clinics (i.e. several milliliters). This proof of concept demonstrates the workability of our method for human samples, despite the highly complex intrinsic nature of unprocessed blood. Our label-free method then opens new perspectives for direct and faster bacterial identification in a larger range of clinical samples. More... »

PAGES

9457

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-10072-z

DOI

http://dx.doi.org/10.1038/s41598-017-10072-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091298744

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28842712


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antibodies, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteremia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Culture", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnostic Tests, Routine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Early Diagnosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hematologic Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Array Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Salmonella Infections", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Salmonella enteritidis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Serologic Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surface Plasmon Resonance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Univ. Grenoble Alpes, CNRS, CEA, INAC, SYMMES, F-38000, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Univ. Grenoble Alpes, CNRS, CEA, INAC, SYMMES, F-38000, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Templier", 
        "givenName": "V.", 
        "id": "sg:person.013731327013.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013731327013.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Univ. Grenoble Alpes, CNRS, CEA, INAC, SYMMES, F-38000, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Univ. Grenoble Alpes, CNRS, CEA, INAC, SYMMES, F-38000, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Livache", 
        "givenName": "T.", 
        "id": "sg:person.01341605145.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341605145.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Equipe Therex, TIMC-IMAG, CNRS UMR 5525, Univ. Grenoble Alpes, F-38000, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.463716.1", 
          "name": [
            "Laboratoire de Bact\u00e9riologie, Centre Hospitalier Universitaire Grenoble Alpes, Univ. Grenoble Alpes, F-38000, Grenoble, France", 
            "Equipe Therex, TIMC-IMAG, CNRS UMR 5525, Univ. Grenoble Alpes, F-38000, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boisset", 
        "givenName": "S.", 
        "id": "sg:person.01074116263.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074116263.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Equipe Therex, TIMC-IMAG, CNRS UMR 5525, Univ. Grenoble Alpes, F-38000, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.463716.1", 
          "name": [
            "Laboratoire de Bact\u00e9riologie, Centre Hospitalier Universitaire Grenoble Alpes, Univ. Grenoble Alpes, F-38000, Grenoble, France", 
            "Equipe Therex, TIMC-IMAG, CNRS UMR 5525, Univ. Grenoble Alpes, F-38000, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maurin", 
        "givenName": "M.", 
        "id": "sg:person.0667651463.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667651463.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Univ. Grenoble Alpes, CNRS, CEA, INAC, SYMMES, F-38000, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Univ. Grenoble Alpes, CNRS, CEA, INAC, SYMMES, F-38000, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Slimani", 
        "givenName": "S.", 
        "id": "sg:person.0774701545.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774701545.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Univ. Grenoble Alpes, CNRS, CEA, INAC, SYMMES, F-38000, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Univ. Grenoble Alpes, CNRS, CEA, INAC, SYMMES, F-38000, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathey", 
        "givenName": "R.", 
        "id": "sg:person.01205040232.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205040232.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CREAB, SyMMES \u2013 UMR 5819, INAC CEA-GRENOBLE, 38054, Grenoble Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.457348.9", 
          "name": [
            "Univ. Grenoble Alpes, CNRS, CEA, INAC, SYMMES, F-38000, Grenoble, France", 
            "CREAB, SyMMES \u2013 UMR 5819, INAC CEA-GRENOBLE, 38054, Grenoble Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roupioz", 
        "givenName": "Y.", 
        "id": "sg:person.01041127143.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041127143.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00134-014-3551-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036104324", 
          "https://doi.org/10.1007/s00134-014-3551-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2334-14-489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014256772", 
          "https://doi.org/10.1186/1471-2334-14-489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-11-156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032472556", 
          "https://doi.org/10.1186/1471-2180-11-156"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08-25", 
    "datePublishedReg": "2017-08-25", 
    "description": "Bloodstream bacterial infections are life-threatening conditions necessitating prompt medical care. Rapid pathogen identification is essential for early setting of the best anti-infectious therapy. However, the bacterial load in blood samples from patients with bacteremia is too low and under the limit of detection of most methods for direct identification of bacteria. Therefore, a preliminary step enabling the bacterial multiplication is required. To do so, blood cultures still remain the gold standard before bacteremia diagnosis. Bacterial identification is then usually obtained within 24 to 48\u2009hours -at least- after blood sampling. In the present work, the fast and direct identification of bacteria present in blood cultures is completed in less than 12\u2009hours, during bacterial growth, using an antibody microarray coupled to a Surface Plasmon Resonance imager (SPRi). Less than one bacterium (Salmonella enterica serovar Enteritidis) per milliliter of blood sample is successfully detected and identified in blood volumes similar to blood tests collected in clinics (i.e. several milliliters). This proof of concept demonstrates the workability of our method for human samples, despite the highly complex intrinsic nature of unprocessed blood. Our label-free method then opens new perspectives for direct and faster bacterial identification in a larger range of clinical samples.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-017-10072-z", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "blood cultures", 
      "blood samples", 
      "life-threatening condition", 
      "anti-infectious therapy", 
      "prompt medical care", 
      "bloodstream bacterial infection", 
      "blood tests", 
      "blood sampling", 
      "blood volume", 
      "bacteremia diagnosis", 
      "medical care", 
      "bacterial infections", 
      "bacterial identification", 
      "bacterial load", 
      "gold standard", 
      "clinical samples", 
      "rapid pathogen identification", 
      "unprocessed blood", 
      "human samples", 
      "early setting", 
      "pathogen identification", 
      "bacterial multiplication", 
      "antibody microarray", 
      "hours", 
      "bacteremia", 
      "patients", 
      "bacterial growth", 
      "identification of bacteria", 
      "therapy", 
      "clinic", 
      "infection", 
      "diagnosis", 
      "blood", 
      "care", 
      "direct identification", 
      "bacteria", 
      "identification", 
      "samples", 
      "microarray", 
      "culture", 
      "setting", 
      "detection", 
      "test", 
      "proof of concept", 
      "volume", 
      "bacterium", 
      "fast bacterial identification", 
      "new perspective", 
      "method", 
      "label-free method", 
      "sampling", 
      "conditions", 
      "standards", 
      "direct detection", 
      "growth", 
      "preliminary step", 
      "limit of detection", 
      "surface plasmon resonance imager", 
      "perspective", 
      "present work", 
      "load", 
      "range", 
      "nature", 
      "step", 
      "multiplication", 
      "proof", 
      "most methods", 
      "large range", 
      "limit", 
      "concept", 
      "intrinsic nature", 
      "work", 
      "biochips", 
      "imager", 
      "workability"
    ], 
    "name": "Biochips for Direct Detection and Identification of Bacteria in Blood Culture-Like Conditions", 
    "pagination": "9457", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091298744"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-10072-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28842712"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-10072-z", 
      "https://app.dimensions.ai/details/publication/pub.1091298744"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_721.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-017-10072-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-10072-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-10072-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-10072-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-10072-z'


 

This table displays all metadata directly associated to this object as RDF triples.

261 TRIPLES      21 PREDICATES      119 URIs      106 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-10072-z schema:about N2601c1351d1b40b8b12c6d41ec00967f
2 N2e16ddc463674fe199071464f94b3b1b
3 N2f538d590e024116b39b7f1685119f48
4 N46a360c23c9e4c81af313b5ba68161a8
5 N85000797c6474195937979a391e09061
6 N92aaa2b3bdf34f05963a68136a924665
7 Nb02b7c61ef77421d87d9e9bfe8c28cc0
8 Nc1dc7e0f39574462931ccb1e11f9bc01
9 Nd4b3148648c24939bb0d3161cd9117b6
10 Ne16ffa36dc8c42d0b8e9779fd2da881c
11 Neab48af9c8aa4425a37e257c9629d63c
12 Neabd2751b6a94550ab4d3f14a2c530f6
13 Neef3ed6720214bea82ae617dbf6ec213
14 Nf598f3d1de254c0491adea793eae2f12
15 anzsrc-for:06
16 anzsrc-for:0605
17 anzsrc-for:11
18 anzsrc-for:1108
19 schema:author N3ee85d0be44346f49e35cd0914aabde8
20 schema:citation sg:pub.10.1007/s00134-014-3551-x
21 sg:pub.10.1186/1471-2180-11-156
22 sg:pub.10.1186/1471-2334-14-489
23 schema:datePublished 2017-08-25
24 schema:datePublishedReg 2017-08-25
25 schema:description Bloodstream bacterial infections are life-threatening conditions necessitating prompt medical care. Rapid pathogen identification is essential for early setting of the best anti-infectious therapy. However, the bacterial load in blood samples from patients with bacteremia is too low and under the limit of detection of most methods for direct identification of bacteria. Therefore, a preliminary step enabling the bacterial multiplication is required. To do so, blood cultures still remain the gold standard before bacteremia diagnosis. Bacterial identification is then usually obtained within 24 to 48 hours -at least- after blood sampling. In the present work, the fast and direct identification of bacteria present in blood cultures is completed in less than 12 hours, during bacterial growth, using an antibody microarray coupled to a Surface Plasmon Resonance imager (SPRi). Less than one bacterium (Salmonella enterica serovar Enteritidis) per milliliter of blood sample is successfully detected and identified in blood volumes similar to blood tests collected in clinics (i.e. several milliliters). This proof of concept demonstrates the workability of our method for human samples, despite the highly complex intrinsic nature of unprocessed blood. Our label-free method then opens new perspectives for direct and faster bacterial identification in a larger range of clinical samples.
26 schema:genre article
27 schema:isAccessibleForFree true
28 schema:isPartOf Na358c469d866446cbb7cdbe599bf9cca
29 Ne2bfede3ba2a405b880cc4208a7df256
30 sg:journal.1045337
31 schema:keywords anti-infectious therapy
32 antibody microarray
33 bacteremia
34 bacteremia diagnosis
35 bacteria
36 bacterial growth
37 bacterial identification
38 bacterial infections
39 bacterial load
40 bacterial multiplication
41 bacterium
42 biochips
43 blood
44 blood cultures
45 blood samples
46 blood sampling
47 blood tests
48 blood volume
49 bloodstream bacterial infection
50 care
51 clinic
52 clinical samples
53 concept
54 conditions
55 culture
56 detection
57 diagnosis
58 direct detection
59 direct identification
60 early setting
61 fast bacterial identification
62 gold standard
63 growth
64 hours
65 human samples
66 identification
67 identification of bacteria
68 imager
69 infection
70 intrinsic nature
71 label-free method
72 large range
73 life-threatening condition
74 limit
75 limit of detection
76 load
77 medical care
78 method
79 microarray
80 most methods
81 multiplication
82 nature
83 new perspective
84 pathogen identification
85 patients
86 perspective
87 preliminary step
88 present work
89 prompt medical care
90 proof
91 proof of concept
92 range
93 rapid pathogen identification
94 samples
95 sampling
96 setting
97 standards
98 step
99 surface plasmon resonance imager
100 test
101 therapy
102 unprocessed blood
103 volume
104 work
105 workability
106 schema:name Biochips for Direct Detection and Identification of Bacteria in Blood Culture-Like Conditions
107 schema:pagination 9457
108 schema:productId N4df32ceec5b345cd8e063db83881a243
109 N6ae656db56394608bf0d230c3c148649
110 Nae6899b3a21d4805b5a17bb1f76265cc
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091298744
112 https://doi.org/10.1038/s41598-017-10072-z
113 schema:sdDatePublished 2022-10-01T06:42
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N090fc1b9ea97402e8cd7a001dc66f12c
116 schema:url https://doi.org/10.1038/s41598-017-10072-z
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N090fc1b9ea97402e8cd7a001dc66f12c schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 N2601c1351d1b40b8b12c6d41ec00967f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Salmonella Infections
124 rdf:type schema:DefinedTerm
125 N2e16ddc463674fe199071464f94b3b1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Bacteremia
127 rdf:type schema:DefinedTerm
128 N2f538d590e024116b39b7f1685119f48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Salmonella enteritidis
130 rdf:type schema:DefinedTerm
131 N3806df00a9064e7fadf19ca8bf0666b3 rdf:first sg:person.01074116263.56
132 rdf:rest N4de1edbfe7414011b1e4511ce94fbe69
133 N3ee85d0be44346f49e35cd0914aabde8 rdf:first sg:person.013731327013.62
134 rdf:rest Nd721becf1eaf4d1ea246b7f69a2537cf
135 N46a360c23c9e4c81af313b5ba68161a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Time Factors
137 rdf:type schema:DefinedTerm
138 N4de1edbfe7414011b1e4511ce94fbe69 rdf:first sg:person.0667651463.25
139 rdf:rest N7ce7ff9e72cf4ae1a6b0ac53c6c94aac
140 N4df32ceec5b345cd8e063db83881a243 schema:name dimensions_id
141 schema:value pub.1091298744
142 rdf:type schema:PropertyValue
143 N6ae656db56394608bf0d230c3c148649 schema:name pubmed_id
144 schema:value 28842712
145 rdf:type schema:PropertyValue
146 N7ce7ff9e72cf4ae1a6b0ac53c6c94aac rdf:first sg:person.0774701545.08
147 rdf:rest Nfd9689983cb444f79cb3fc239b9ec517
148 N85000797c6474195937979a391e09061 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Diagnostic Tests, Routine
150 rdf:type schema:DefinedTerm
151 N92aaa2b3bdf34f05963a68136a924665 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Humans
153 rdf:type schema:DefinedTerm
154 Na358c469d866446cbb7cdbe599bf9cca schema:issueNumber 1
155 rdf:type schema:PublicationIssue
156 Nae6899b3a21d4805b5a17bb1f76265cc schema:name doi
157 schema:value 10.1038/s41598-017-10072-z
158 rdf:type schema:PropertyValue
159 Nb02b7c61ef77421d87d9e9bfe8c28cc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Protein Array Analysis
161 rdf:type schema:DefinedTerm
162 Nc1dc7e0f39574462931ccb1e11f9bc01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Blood Culture
164 rdf:type schema:DefinedTerm
165 Nd4b3148648c24939bb0d3161cd9117b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Surface Plasmon Resonance
167 rdf:type schema:DefinedTerm
168 Nd721becf1eaf4d1ea246b7f69a2537cf rdf:first sg:person.01341605145.16
169 rdf:rest N3806df00a9064e7fadf19ca8bf0666b3
170 Ne16ffa36dc8c42d0b8e9779fd2da881c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Hematologic Tests
172 rdf:type schema:DefinedTerm
173 Ne1ac48111193490497a2d9e9c31ce65f rdf:first sg:person.01041127143.37
174 rdf:rest rdf:nil
175 Ne2bfede3ba2a405b880cc4208a7df256 schema:volumeNumber 7
176 rdf:type schema:PublicationVolume
177 Neab48af9c8aa4425a37e257c9629d63c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Serologic Tests
179 rdf:type schema:DefinedTerm
180 Neabd2751b6a94550ab4d3f14a2c530f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Antibodies, Bacterial
182 rdf:type schema:DefinedTerm
183 Neef3ed6720214bea82ae617dbf6ec213 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Early Diagnosis
185 rdf:type schema:DefinedTerm
186 Nf598f3d1de254c0491adea793eae2f12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Feasibility Studies
188 rdf:type schema:DefinedTerm
189 Nfd9689983cb444f79cb3fc239b9ec517 rdf:first sg:person.01205040232.77
190 rdf:rest Ne1ac48111193490497a2d9e9c31ce65f
191 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
192 schema:name Biological Sciences
193 rdf:type schema:DefinedTerm
194 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
195 schema:name Microbiology
196 rdf:type schema:DefinedTerm
197 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
198 schema:name Medical and Health Sciences
199 rdf:type schema:DefinedTerm
200 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
201 schema:name Medical Microbiology
202 rdf:type schema:DefinedTerm
203 sg:journal.1045337 schema:issn 2045-2322
204 schema:name Scientific Reports
205 schema:publisher Springer Nature
206 rdf:type schema:Periodical
207 sg:person.01041127143.37 schema:affiliation grid-institutes:grid.457348.9
208 schema:familyName Roupioz
209 schema:givenName Y.
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041127143.37
211 rdf:type schema:Person
212 sg:person.01074116263.56 schema:affiliation grid-institutes:grid.463716.1
213 schema:familyName Boisset
214 schema:givenName S.
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074116263.56
216 rdf:type schema:Person
217 sg:person.01205040232.77 schema:affiliation grid-institutes:grid.4444.0
218 schema:familyName Mathey
219 schema:givenName R.
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205040232.77
221 rdf:type schema:Person
222 sg:person.01341605145.16 schema:affiliation grid-institutes:grid.4444.0
223 schema:familyName Livache
224 schema:givenName T.
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341605145.16
226 rdf:type schema:Person
227 sg:person.013731327013.62 schema:affiliation grid-institutes:grid.4444.0
228 schema:familyName Templier
229 schema:givenName V.
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013731327013.62
231 rdf:type schema:Person
232 sg:person.0667651463.25 schema:affiliation grid-institutes:grid.463716.1
233 schema:familyName Maurin
234 schema:givenName M.
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667651463.25
236 rdf:type schema:Person
237 sg:person.0774701545.08 schema:affiliation grid-institutes:grid.4444.0
238 schema:familyName Slimani
239 schema:givenName S.
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774701545.08
241 rdf:type schema:Person
242 sg:pub.10.1007/s00134-014-3551-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036104324
243 https://doi.org/10.1007/s00134-014-3551-x
244 rdf:type schema:CreativeWork
245 sg:pub.10.1186/1471-2180-11-156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032472556
246 https://doi.org/10.1186/1471-2180-11-156
247 rdf:type schema:CreativeWork
248 sg:pub.10.1186/1471-2334-14-489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014256772
249 https://doi.org/10.1186/1471-2334-14-489
250 rdf:type schema:CreativeWork
251 grid-institutes:grid.4444.0 schema:alternateName Univ. Grenoble Alpes, CNRS, CEA, INAC, SYMMES, F-38000, Grenoble, France
252 schema:name Univ. Grenoble Alpes, CNRS, CEA, INAC, SYMMES, F-38000, Grenoble, France
253 rdf:type schema:Organization
254 grid-institutes:grid.457348.9 schema:alternateName CREAB, SyMMES – UMR 5819, INAC CEA-GRENOBLE, 38054, Grenoble Cedex, France
255 schema:name CREAB, SyMMES – UMR 5819, INAC CEA-GRENOBLE, 38054, Grenoble Cedex, France
256 Univ. Grenoble Alpes, CNRS, CEA, INAC, SYMMES, F-38000, Grenoble, France
257 rdf:type schema:Organization
258 grid-institutes:grid.463716.1 schema:alternateName Equipe Therex, TIMC-IMAG, CNRS UMR 5525, Univ. Grenoble Alpes, F-38000, Grenoble, France
259 schema:name Equipe Therex, TIMC-IMAG, CNRS UMR 5525, Univ. Grenoble Alpes, F-38000, Grenoble, France
260 Laboratoire de Bactériologie, Centre Hospitalier Universitaire Grenoble Alpes, Univ. Grenoble Alpes, F-38000, Grenoble, France
261 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...