Exciton-polariton Josephson junctions at finite temperatures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-08-25

AUTHORS

M. E. Lebedev, D. A. Dolinina, Kuo-Bin Hong, Tien-Chang Lu, A. V. Kavokin, A. P. Alodjants

ABSTRACT

We consider finite temperature effects in a non-standard Bose-Hubbard model for an exciton- polariton Josephson junction (JJ) that is characterised by complicated potential energy landscapes (PEL) consisting of sets of barriers and wells. We show that the transition between thermal activation (classical) and tunneling (quantum) regimes exhibits universal features of the first and second order phase transition (PT) depending on the PEL for two polariton condensates that might be described as transition from the thermal to the quantum annealing regime. In the presence of dissipation the relative phase of two condensates exhibits non-equilibrium PT from the quantum regime characterized by efficient tunneling of polaritons to the regime of permanent Josephson or Rabi oscillations, where the tunneling is suppressed, respectively. This analysis paves the way for the application of coupled polariton condensates for the realisation of a quantum annealing algorithm in presently experimentally accessible semiconductor microcavities possessing high (105 and more) Q-factors. More... »

PAGES

9515

References to SciGraph publications

  • 2011-05-11. Quantum annealing with manufactured spins in NATURE
  • 2016-01-21. Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry in SCIENTIFIC REPORTS
  • 2016-02-03. Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity in SCIENTIFIC REPORTS
  • 2008-08-10. Quantized vortices in an exciton–polariton condensate in NATURE PHYSICS
  • 2011-11-13. Observation of bright polariton solitons in a semiconductor microcavity in NATURE PHOTONICS
  • 2014-10-31. Exciton–polariton condensates in NATURE PHYSICS
  • 2007. Quantum Tunneling in Complex Systems, The Semiclassical Approach in NONE
  • 2012. Exciton Polaritons in Microcavities, New Frontiers in NONE
  • 2009-01. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity in NATURE
  • 2013-05-15. An electrically pumped polariton laser in NATURE
  • 2013-04-21. Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons in NATURE PHYSICS
  • 2013-04-30. All-optical polariton transistor in NATURE COMMUNICATIONS
  • 2007-11. Coherent zero-state and π-state in an exciton–polariton condensate array in NATURE
  • 2010-04-04. Exciton–polariton spin switches in NATURE PHOTONICS
  • 2013-05-21. Thermally assisted quantum annealing of a 16-qubit problem in NATURE COMMUNICATIONS
  • 2007-08-31. Josephson dynamics for coupled polariton modes under the atom–field interaction in the cavity in APPLIED PHYSICS B
  • 2014-02-11. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-017-09824-8

    DOI

    http://dx.doi.org/10.1038/s41598-017-09824-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091298684

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28842628


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "ITMO University, St. Petersburg, 197101 Russia", 
              "id": "http://www.grid.ac/institutes/grid.35915.3b", 
              "name": [
                "ITMO University, St. Petersburg, 197101 Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lebedev", 
            "givenName": "M. E.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ITMO University, St. Petersburg, 197101 Russia", 
              "id": "http://www.grid.ac/institutes/grid.35915.3b", 
              "name": [
                "ITMO University, St. Petersburg, 197101 Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dolinina", 
            "givenName": "D. A.", 
            "id": "sg:person.016652114745.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652114745.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Photonics, National Chiao Tung University, Hsinchu, 300 Taiwan", 
              "id": "http://www.grid.ac/institutes/grid.260539.b", 
              "name": [
                "Department of Photonics, National Chiao Tung University, Hsinchu, 300 Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hong", 
            "givenName": "Kuo-Bin", 
            "id": "sg:person.0710115157.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710115157.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Photonics, National Chiao Tung University, Hsinchu, 300 Taiwan", 
              "id": "http://www.grid.ac/institutes/grid.260539.b", 
              "name": [
                "Department of Photonics, National Chiao Tung University, Hsinchu, 300 Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Tien-Chang", 
            "id": "sg:person.0674631737.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674631737.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto CNR-SPIN, Viale del Politecnico 1, I-00133 Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5326.2", 
              "name": [
                "Spin Optics Laboratory, St. Petersburg State University, Ul\u2019anovskaya, Peterhof, St. Petersburg 198504 Russia", 
                "School of Physics and Astronomy, University of Southampton, SO17 1BJ Southampton, United Kingdom", 
                "Istituto CNR-SPIN, Viale del Politecnico 1, I-00133 Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kavokin", 
            "givenName": "A. V.", 
            "id": "sg:person.0715133571.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715133571.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Vladimir State University named after A. G. and N. G. Stoletovs, Gorkii Street 87, Vladimir, Russia", 
              "id": "http://www.grid.ac/institutes/grid.171855.f", 
              "name": [
                "ITMO University, St. Petersburg, 197101 Russia", 
                "Vladimir State University named after A. G. and N. G. Stoletovs, Gorkii Street 87, Vladimir, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alodjants", 
            "givenName": "A. P.", 
            "id": "sg:person.0670066346.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670066346.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ncomms4278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010927231", 
              "https://doi.org/10.1038/ncomms4278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005700592", 
              "https://doi.org/10.1038/nature10012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep19551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033525024", 
              "https://doi.org/10.1038/srep19551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052750306", 
              "https://doi.org/10.1038/nature12036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042186193", 
              "https://doi.org/10.1038/nature06334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023480480", 
              "https://doi.org/10.1038/nature07640"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep20581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011638217", 
              "https://doi.org/10.1038/srep20581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2011.267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040245125", 
              "https://doi.org/10.1038/nphoton.2011.267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2609", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028278495", 
              "https://doi.org/10.1038/nphys2609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018886083", 
              "https://doi.org/10.1038/ncomms2920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-68076-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004527478", 
              "https://doi.org/10.1007/3-540-68076-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029185777", 
              "https://doi.org/10.1038/nphys3143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-24186-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027425479", 
              "https://doi.org/10.1007/978-3-642-24186-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017957216", 
              "https://doi.org/10.1038/ncomms2734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00340-007-2771-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004687023", 
              "https://doi.org/10.1007/s00340-007-2771-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2010.79", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000880728", 
              "https://doi.org/10.1038/nphoton.2010.79"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013511404", 
              "https://doi.org/10.1038/nphys1051"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-08-25", 
        "datePublishedReg": "2017-08-25", 
        "description": "We consider finite temperature effects in a non-standard Bose-Hubbard model for an exciton- polariton Josephson junction (JJ) that is characterised by complicated potential energy landscapes (PEL) consisting of sets of barriers and wells. We show that the transition between thermal activation (classical) and tunneling (quantum) regimes exhibits universal features of the first and second order phase transition (PT) depending on the PEL for two polariton condensates that might be described as transition from the thermal to the quantum annealing regime. In the presence of dissipation the relative phase of two condensates exhibits non-equilibrium PT from the quantum regime characterized by efficient tunneling of polaritons to the regime of permanent Josephson or Rabi oscillations, where the tunneling is suppressed, respectively. This analysis paves the way for the application of coupled polariton condensates for the realisation of a quantum annealing algorithm in presently experimentally accessible semiconductor microcavities possessing high (105 and more) Q-factors.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-017-09824-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6746481", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6746289", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3940738", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "potential energy landscape", 
          "polariton condensate", 
          "Josephson junctions", 
          "phase transition", 
          "Bose-Hubbard model", 
          "presence of dissipation", 
          "quantum annealing algorithm", 
          "finite temperature effects", 
          "quantum regime", 
          "Rabi oscillations", 
          "semiconductor microcavities", 
          "non-equilibrium phase transition", 
          "second-order phase transition", 
          "tunneling regime", 
          "order phase transition", 
          "relative phase", 
          "finite temperature", 
          "efficient tunneling", 
          "condensate", 
          "annealing regimes", 
          "energy landscape", 
          "tunneling", 
          "thermal activation", 
          "transition", 
          "regime", 
          "universal feature", 
          "annealing algorithm", 
          "microcavities", 
          "polaritons", 
          "Josephson", 
          "temperature effects", 
          "oscillations", 
          "dissipation", 
          "wells", 
          "junction", 
          "set of barriers", 
          "temperature", 
          "algorithm", 
          "phase", 
          "set", 
          "model", 
          "realisation", 
          "thermal", 
          "applications", 
          "barriers", 
          "features", 
          "effect", 
          "presence", 
          "way", 
          "analysis", 
          "factors", 
          "landscape", 
          "activation", 
          "non-standard Bose-Hubbard model", 
          "exciton- polariton Josephson junction", 
          "complicated potential energy landscapes", 
          "quantum annealing regime", 
          "permanent Josephson", 
          "accessible semiconductor microcavities"
        ], 
        "name": "Exciton-polariton Josephson junctions at finite temperatures", 
        "pagination": "9515", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091298684"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-017-09824-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28842628"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-017-09824-8", 
          "https://app.dimensions.ai/details/publication/pub.1091298684"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:45", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_750.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-017-09824-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-09824-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-09824-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-09824-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-09824-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    240 TRIPLES      22 PREDICATES      102 URIs      77 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-017-09824-8 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N6411d419bff64192a0b0445f255dd65e
    4 schema:citation sg:pub.10.1007/3-540-68076-4
    5 sg:pub.10.1007/978-3-642-24186-4
    6 sg:pub.10.1007/s00340-007-2771-y
    7 sg:pub.10.1038/nature06334
    8 sg:pub.10.1038/nature07640
    9 sg:pub.10.1038/nature10012
    10 sg:pub.10.1038/nature12036
    11 sg:pub.10.1038/ncomms2734
    12 sg:pub.10.1038/ncomms2920
    13 sg:pub.10.1038/ncomms4278
    14 sg:pub.10.1038/nphoton.2010.79
    15 sg:pub.10.1038/nphoton.2011.267
    16 sg:pub.10.1038/nphys1051
    17 sg:pub.10.1038/nphys2609
    18 sg:pub.10.1038/nphys3143
    19 sg:pub.10.1038/srep19551
    20 sg:pub.10.1038/srep20581
    21 schema:datePublished 2017-08-25
    22 schema:datePublishedReg 2017-08-25
    23 schema:description We consider finite temperature effects in a non-standard Bose-Hubbard model for an exciton- polariton Josephson junction (JJ) that is characterised by complicated potential energy landscapes (PEL) consisting of sets of barriers and wells. We show that the transition between thermal activation (classical) and tunneling (quantum) regimes exhibits universal features of the first and second order phase transition (PT) depending on the PEL for two polariton condensates that might be described as transition from the thermal to the quantum annealing regime. In the presence of dissipation the relative phase of two condensates exhibits non-equilibrium PT from the quantum regime characterized by efficient tunneling of polaritons to the regime of permanent Josephson or Rabi oscillations, where the tunneling is suppressed, respectively. This analysis paves the way for the application of coupled polariton condensates for the realisation of a quantum annealing algorithm in presently experimentally accessible semiconductor microcavities possessing high (10<sup>5</sup> and more) Q-factors.
    24 schema:genre article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree true
    27 schema:isPartOf Nec9ae042ba794d578d3ec636051915ce
    28 Nf4f7cfc7b43b41b0b7b4f3c87c606aec
    29 sg:journal.1045337
    30 schema:keywords Bose-Hubbard model
    31 Josephson
    32 Josephson junctions
    33 Rabi oscillations
    34 accessible semiconductor microcavities
    35 activation
    36 algorithm
    37 analysis
    38 annealing algorithm
    39 annealing regimes
    40 applications
    41 barriers
    42 complicated potential energy landscapes
    43 condensate
    44 dissipation
    45 effect
    46 efficient tunneling
    47 energy landscape
    48 exciton- polariton Josephson junction
    49 factors
    50 features
    51 finite temperature
    52 finite temperature effects
    53 junction
    54 landscape
    55 microcavities
    56 model
    57 non-equilibrium phase transition
    58 non-standard Bose-Hubbard model
    59 order phase transition
    60 oscillations
    61 permanent Josephson
    62 phase
    63 phase transition
    64 polariton condensate
    65 polaritons
    66 potential energy landscape
    67 presence
    68 presence of dissipation
    69 quantum annealing algorithm
    70 quantum annealing regime
    71 quantum regime
    72 realisation
    73 regime
    74 relative phase
    75 second-order phase transition
    76 semiconductor microcavities
    77 set
    78 set of barriers
    79 temperature
    80 temperature effects
    81 thermal
    82 thermal activation
    83 transition
    84 tunneling
    85 tunneling regime
    86 universal feature
    87 way
    88 wells
    89 schema:name Exciton-polariton Josephson junctions at finite temperatures
    90 schema:pagination 9515
    91 schema:productId N28d28035e6cd4662a340c89269f1bc51
    92 N4858ee3a3dd549d7a0f55511d87fe8c2
    93 N6aa71b64b2304bd09a89db38bcca39bf
    94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091298684
    95 https://doi.org/10.1038/s41598-017-09824-8
    96 schema:sdDatePublished 2022-01-01T18:45
    97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    98 schema:sdPublisher N5b3e1322569442cf90ea390421f6e6ec
    99 schema:url https://doi.org/10.1038/s41598-017-09824-8
    100 sgo:license sg:explorer/license/
    101 sgo:sdDataset articles
    102 rdf:type schema:ScholarlyArticle
    103 N0310b509a29943ad979849ec426bb292 rdf:first sg:person.016652114745.37
    104 rdf:rest N4f15ec9a6b4f421eb516ee9c5bc171d9
    105 N1a06ee51e1dc46a9b15ff4ecb575463e rdf:first sg:person.0674631737.65
    106 rdf:rest Ned3f3e11b7334b6a8796089308872f89
    107 N28d28035e6cd4662a340c89269f1bc51 schema:name doi
    108 schema:value 10.1038/s41598-017-09824-8
    109 rdf:type schema:PropertyValue
    110 N4858ee3a3dd549d7a0f55511d87fe8c2 schema:name dimensions_id
    111 schema:value pub.1091298684
    112 rdf:type schema:PropertyValue
    113 N4f15ec9a6b4f421eb516ee9c5bc171d9 rdf:first sg:person.0710115157.38
    114 rdf:rest N1a06ee51e1dc46a9b15ff4ecb575463e
    115 N5919954cef234a1b82c0fea15ed66903 schema:affiliation grid-institutes:grid.35915.3b
    116 schema:familyName Lebedev
    117 schema:givenName M. E.
    118 rdf:type schema:Person
    119 N5b3e1322569442cf90ea390421f6e6ec schema:name Springer Nature - SN SciGraph project
    120 rdf:type schema:Organization
    121 N6411d419bff64192a0b0445f255dd65e rdf:first N5919954cef234a1b82c0fea15ed66903
    122 rdf:rest N0310b509a29943ad979849ec426bb292
    123 N6aa71b64b2304bd09a89db38bcca39bf schema:name pubmed_id
    124 schema:value 28842628
    125 rdf:type schema:PropertyValue
    126 Nde8d085e9cc54b1bb4ed2ee41176c2b9 rdf:first sg:person.0670066346.11
    127 rdf:rest rdf:nil
    128 Nec9ae042ba794d578d3ec636051915ce schema:volumeNumber 7
    129 rdf:type schema:PublicationVolume
    130 Ned3f3e11b7334b6a8796089308872f89 rdf:first sg:person.0715133571.75
    131 rdf:rest Nde8d085e9cc54b1bb4ed2ee41176c2b9
    132 Nf4f7cfc7b43b41b0b7b4f3c87c606aec schema:issueNumber 1
    133 rdf:type schema:PublicationIssue
    134 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Physical Sciences
    136 rdf:type schema:DefinedTerm
    137 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    139 rdf:type schema:DefinedTerm
    140 sg:grant.3940738 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-09824-8
    141 rdf:type schema:MonetaryGrant
    142 sg:grant.6746289 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-09824-8
    143 rdf:type schema:MonetaryGrant
    144 sg:grant.6746481 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-09824-8
    145 rdf:type schema:MonetaryGrant
    146 sg:journal.1045337 schema:issn 2045-2322
    147 schema:name Scientific Reports
    148 schema:publisher Springer Nature
    149 rdf:type schema:Periodical
    150 sg:person.016652114745.37 schema:affiliation grid-institutes:grid.35915.3b
    151 schema:familyName Dolinina
    152 schema:givenName D. A.
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652114745.37
    154 rdf:type schema:Person
    155 sg:person.0670066346.11 schema:affiliation grid-institutes:grid.171855.f
    156 schema:familyName Alodjants
    157 schema:givenName A. P.
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670066346.11
    159 rdf:type schema:Person
    160 sg:person.0674631737.65 schema:affiliation grid-institutes:grid.260539.b
    161 schema:familyName Lu
    162 schema:givenName Tien-Chang
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674631737.65
    164 rdf:type schema:Person
    165 sg:person.0710115157.38 schema:affiliation grid-institutes:grid.260539.b
    166 schema:familyName Hong
    167 schema:givenName Kuo-Bin
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710115157.38
    169 rdf:type schema:Person
    170 sg:person.0715133571.75 schema:affiliation grid-institutes:grid.5326.2
    171 schema:familyName Kavokin
    172 schema:givenName A. V.
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715133571.75
    174 rdf:type schema:Person
    175 sg:pub.10.1007/3-540-68076-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004527478
    176 https://doi.org/10.1007/3-540-68076-4
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/978-3-642-24186-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027425479
    179 https://doi.org/10.1007/978-3-642-24186-4
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s00340-007-2771-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1004687023
    182 https://doi.org/10.1007/s00340-007-2771-y
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nature06334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042186193
    185 https://doi.org/10.1038/nature06334
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nature07640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023480480
    188 https://doi.org/10.1038/nature07640
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nature10012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005700592
    191 https://doi.org/10.1038/nature10012
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nature12036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052750306
    194 https://doi.org/10.1038/nature12036
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/ncomms2734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017957216
    197 https://doi.org/10.1038/ncomms2734
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/ncomms2920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018886083
    200 https://doi.org/10.1038/ncomms2920
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/ncomms4278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010927231
    203 https://doi.org/10.1038/ncomms4278
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nphoton.2010.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000880728
    206 https://doi.org/10.1038/nphoton.2010.79
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nphoton.2011.267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040245125
    209 https://doi.org/10.1038/nphoton.2011.267
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nphys1051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013511404
    212 https://doi.org/10.1038/nphys1051
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nphys2609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028278495
    215 https://doi.org/10.1038/nphys2609
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nphys3143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029185777
    218 https://doi.org/10.1038/nphys3143
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/srep19551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033525024
    221 https://doi.org/10.1038/srep19551
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/srep20581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011638217
    224 https://doi.org/10.1038/srep20581
    225 rdf:type schema:CreativeWork
    226 grid-institutes:grid.171855.f schema:alternateName Vladimir State University named after A. G. and N. G. Stoletovs, Gorkii Street 87, Vladimir, Russia
    227 schema:name ITMO University, St. Petersburg, 197101 Russia
    228 Vladimir State University named after A. G. and N. G. Stoletovs, Gorkii Street 87, Vladimir, Russia
    229 rdf:type schema:Organization
    230 grid-institutes:grid.260539.b schema:alternateName Department of Photonics, National Chiao Tung University, Hsinchu, 300 Taiwan
    231 schema:name Department of Photonics, National Chiao Tung University, Hsinchu, 300 Taiwan
    232 rdf:type schema:Organization
    233 grid-institutes:grid.35915.3b schema:alternateName ITMO University, St. Petersburg, 197101 Russia
    234 schema:name ITMO University, St. Petersburg, 197101 Russia
    235 rdf:type schema:Organization
    236 grid-institutes:grid.5326.2 schema:alternateName Istituto CNR-SPIN, Viale del Politecnico 1, I-00133 Rome, Italy
    237 schema:name Istituto CNR-SPIN, Viale del Politecnico 1, I-00133 Rome, Italy
    238 School of Physics and Astronomy, University of Southampton, SO17 1BJ Southampton, United Kingdom
    239 Spin Optics Laboratory, St. Petersburg State University, Ul’anovskaya, Peterhof, St. Petersburg 198504 Russia
    240 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...