Maximum entropy models capture melodic styles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Jason Sakellariou, Francesca Tria, Vittorio Loreto, Francois Pachet

ABSTRACT

We introduce a Maximum Entropy model able to capture the statistics of melodies in music. The model can be used to generate new melodies that emulate the style of a given musical corpus. Instead of using the n-body interactions of (n-1)-order Markov models, traditionally used in automatic music generation, we use a k-nearest neighbour model with pairwise interactions only. In that way, we keep the number of parameters low and avoid over-fitting problems typical of Markov models. We show that long-range musical phrases don't need to be explicitly enforced using high-order Markov interactions, but can instead emerge from multiple, competing, pairwise interactions. We validate our Maximum Entropy model by contrasting how much the generated sequences capture the style of the original corpus without plagiarizing it. To this end we use a data-compression approach to discriminate the levels of borrowing and innovation featured by the artificial sequences. Our modelling scheme outperforms both fixed-order and variable-order Markov models. This shows that, despite being based only on pairwise interactions, our scheme opens the possibility to generate musically sensible alterations of the original phrases, providing a way to generate innovation. More... »

PAGES

9172

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-08028-4

DOI

http://dx.doi.org/10.1038/s41598-017-08028-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091267063

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28835642


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire d'informatique de Paris 6", 
          "id": "https://www.grid.ac/institutes/grid.462751.3", 
          "name": [
            "SONY CSL, Paris, France", 
            "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakellariou", 
        "givenName": "Jason", 
        "id": "sg:person.015341172267.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015341172267.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Complexity Science Hub Vienna", 
          "id": "https://www.grid.ac/institutes/grid.484678.1", 
          "name": [
            "SONY CSL, Paris, France", 
            "Department of Physics, Sapienza University of Rome, Rome, Italy", 
            "ISI Foundation, Turin, Italy", 
            "Complexity Science Hub Vienna (CSHV), Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tria", 
        "givenName": "Francesca", 
        "id": "sg:person.01163550601.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163550601.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Complexity Science Hub Vienna", 
          "id": "https://www.grid.ac/institutes/grid.484678.1", 
          "name": [
            "SONY CSL, Paris, France", 
            "Department of Physics, Sapienza University of Rome, Rome, Italy", 
            "ISI Foundation, Turin, Italy", 
            "Complexity Science Hub Vienna (CSHV), Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Loreto", 
        "givenName": "Vittorio", 
        "id": "sg:person.01144041011.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144041011.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'informatique de Paris 6", 
          "id": "https://www.grid.ac/institutes/grid.462751.3", 
          "name": [
            "SONY CSL, Paris, France", 
            "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pachet", 
        "givenName": "Francois", 
        "id": "sg:person.016502527757.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016502527757.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreve.81.066119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007947527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.066119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007947527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/e13040902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008765824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1118633109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011561478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013920925", 
          "https://doi.org/10.1038/nature04701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013920925", 
          "https://doi.org/10.1038/nature04701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013920925", 
          "https://doi.org/10.1038/nature04701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2005/04/p04002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018882425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1001705107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022332282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1076/jnmr.32.3.333.16861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035769039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.048702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039739390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.048702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039739390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0609152103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043701131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0805923106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044743857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.87.012707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051496175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.87.012707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051496175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1699114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057769646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1977.1055714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061647931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/rd.214.0350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063180624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/09-aos691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064390879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1613/jair.1491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105579319"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "We introduce a Maximum Entropy model able to capture the statistics of melodies in music. The model can be used to generate new melodies that emulate the style of a given musical corpus. Instead of using the n-body interactions of (n-1)-order Markov models, traditionally used in automatic music generation, we use a k-nearest neighbour model with pairwise interactions only. In that way, we keep the number of parameters low and avoid over-fitting problems typical of Markov models. We show that long-range musical phrases don't need to be explicitly enforced using high-order Markov interactions, but can instead emerge from multiple, competing, pairwise interactions. We validate our Maximum Entropy model by contrasting how much the generated sequences capture the style of the original corpus without plagiarizing it. To this end we use a data-compression approach to discriminate the levels of borrowing and innovation featured by the artificial sequences. Our modelling scheme outperforms both fixed-order and variable-order Markov models. This shows that, despite being based only on pairwise interactions, our scheme opens the possibility to generate musically sensible alterations of the original phrases, providing a way to generate innovation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-08028-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3798882", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6540697", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Maximum entropy models capture melodic styles", 
    "pagination": "9172", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "91d21d8538c19b93502661fedc7392282bb58ea61e152d4146bd9224160e11a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28835642"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-08028-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091267063"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-08028-4", 
      "https://app.dimensions.ai/details/publication/pub.1091267063"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11726_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-08028-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-08028-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-08028-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-08028-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-08028-4'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      46 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-08028-4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ne69baebc59fc4e68b8a0644fcda5cf6b
4 schema:citation sg:pub.10.1038/nature04701
5 https://doi.org/10.1063/1.1699114
6 https://doi.org/10.1073/pnas.0609152103
7 https://doi.org/10.1073/pnas.0805923106
8 https://doi.org/10.1073/pnas.1001705107
9 https://doi.org/10.1073/pnas.1118633109
10 https://doi.org/10.1076/jnmr.32.3.333.16861
11 https://doi.org/10.1088/1742-5468/2005/04/p04002
12 https://doi.org/10.1103/physrev.106.620
13 https://doi.org/10.1103/physreve.81.066119
14 https://doi.org/10.1103/physreve.87.012707
15 https://doi.org/10.1103/physrevlett.88.048702
16 https://doi.org/10.1109/tit.1977.1055714
17 https://doi.org/10.1147/rd.214.0350
18 https://doi.org/10.1214/09-aos691
19 https://doi.org/10.1613/jair.1491
20 https://doi.org/10.3390/e13040902
21 schema:datePublished 2017-12
22 schema:datePublishedReg 2017-12-01
23 schema:description We introduce a Maximum Entropy model able to capture the statistics of melodies in music. The model can be used to generate new melodies that emulate the style of a given musical corpus. Instead of using the n-body interactions of (n-1)-order Markov models, traditionally used in automatic music generation, we use a k-nearest neighbour model with pairwise interactions only. In that way, we keep the number of parameters low and avoid over-fitting problems typical of Markov models. We show that long-range musical phrases don't need to be explicitly enforced using high-order Markov interactions, but can instead emerge from multiple, competing, pairwise interactions. We validate our Maximum Entropy model by contrasting how much the generated sequences capture the style of the original corpus without plagiarizing it. To this end we use a data-compression approach to discriminate the levels of borrowing and innovation featured by the artificial sequences. Our modelling scheme outperforms both fixed-order and variable-order Markov models. This shows that, despite being based only on pairwise interactions, our scheme opens the possibility to generate musically sensible alterations of the original phrases, providing a way to generate innovation.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N1b23e43f6e7643b38b19c872c3a483ab
28 Nbdfef940ac924e8eaf7965dbe270af64
29 sg:journal.1045337
30 schema:name Maximum entropy models capture melodic styles
31 schema:pagination 9172
32 schema:productId N06fadd2e236d4b879a5976c96e87868f
33 N12632f952237437c9f3073ff72acc282
34 Ndcc350afd48f4423b8f49ca38c0b5a90
35 Neda26d4009664688aae1f511ec175a88
36 Nfe37ff317e0c4f0fa59d1ce1331bb145
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091267063
38 https://doi.org/10.1038/s41598-017-08028-4
39 schema:sdDatePublished 2019-04-11T11:21
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N04509d8b85a9419b80ad4442596f8877
42 schema:url https://www.nature.com/articles/s41598-017-08028-4
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N04509d8b85a9419b80ad4442596f8877 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N06fadd2e236d4b879a5976c96e87868f schema:name dimensions_id
49 schema:value pub.1091267063
50 rdf:type schema:PropertyValue
51 N12632f952237437c9f3073ff72acc282 schema:name pubmed_id
52 schema:value 28835642
53 rdf:type schema:PropertyValue
54 N1b23e43f6e7643b38b19c872c3a483ab schema:issueNumber 1
55 rdf:type schema:PublicationIssue
56 N574020d6e03442838202eaafa3474b9b rdf:first sg:person.016502527757.13
57 rdf:rest rdf:nil
58 N5a37bc6b855d4992b5cb0a86a3926843 rdf:first sg:person.01163550601.76
59 rdf:rest Na8e3575c9cc1475bbfa135b4ebd40b0b
60 Na8e3575c9cc1475bbfa135b4ebd40b0b rdf:first sg:person.01144041011.33
61 rdf:rest N574020d6e03442838202eaafa3474b9b
62 Nbdfef940ac924e8eaf7965dbe270af64 schema:volumeNumber 7
63 rdf:type schema:PublicationVolume
64 Ndcc350afd48f4423b8f49ca38c0b5a90 schema:name readcube_id
65 schema:value 91d21d8538c19b93502661fedc7392282bb58ea61e152d4146bd9224160e11a0
66 rdf:type schema:PropertyValue
67 Ne69baebc59fc4e68b8a0644fcda5cf6b rdf:first sg:person.015341172267.25
68 rdf:rest N5a37bc6b855d4992b5cb0a86a3926843
69 Neda26d4009664688aae1f511ec175a88 schema:name doi
70 schema:value 10.1038/s41598-017-08028-4
71 rdf:type schema:PropertyValue
72 Nfe37ff317e0c4f0fa59d1ce1331bb145 schema:name nlm_unique_id
73 schema:value 101563288
74 rdf:type schema:PropertyValue
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
79 schema:name Statistics
80 rdf:type schema:DefinedTerm
81 sg:grant.3798882 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-08028-4
82 rdf:type schema:MonetaryGrant
83 sg:grant.6540697 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-08028-4
84 rdf:type schema:MonetaryGrant
85 sg:journal.1045337 schema:issn 2045-2322
86 schema:name Scientific Reports
87 rdf:type schema:Periodical
88 sg:person.01144041011.33 schema:affiliation https://www.grid.ac/institutes/grid.484678.1
89 schema:familyName Loreto
90 schema:givenName Vittorio
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144041011.33
92 rdf:type schema:Person
93 sg:person.01163550601.76 schema:affiliation https://www.grid.ac/institutes/grid.484678.1
94 schema:familyName Tria
95 schema:givenName Francesca
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163550601.76
97 rdf:type schema:Person
98 sg:person.015341172267.25 schema:affiliation https://www.grid.ac/institutes/grid.462751.3
99 schema:familyName Sakellariou
100 schema:givenName Jason
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015341172267.25
102 rdf:type schema:Person
103 sg:person.016502527757.13 schema:affiliation https://www.grid.ac/institutes/grid.462751.3
104 schema:familyName Pachet
105 schema:givenName Francois
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016502527757.13
107 rdf:type schema:Person
108 sg:pub.10.1038/nature04701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013920925
109 https://doi.org/10.1038/nature04701
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1063/1.1699114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057769646
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1073/pnas.0609152103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043701131
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1073/pnas.0805923106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044743857
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1073/pnas.1001705107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022332282
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1073/pnas.1118633109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011561478
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1076/jnmr.32.3.333.16861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035769039
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1088/1742-5468/2005/04/p04002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018882425
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrev.106.620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418970
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physreve.81.066119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007947527
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physreve.87.012707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051496175
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.88.048702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039739390
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/tit.1977.1055714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647931
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1147/rd.214.0350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063180624
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1214/09-aos691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064390879
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1613/jair.1491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579319
140 rdf:type schema:CreativeWork
141 https://doi.org/10.3390/e13040902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008765824
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.462751.3 schema:alternateName Laboratoire d'informatique de Paris 6
144 schema:name SONY CSL, Paris, France
145 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
146 rdf:type schema:Organization
147 https://www.grid.ac/institutes/grid.484678.1 schema:alternateName Complexity Science Hub Vienna
148 schema:name Complexity Science Hub Vienna (CSHV), Vienna, Austria
149 Department of Physics, Sapienza University of Rome, Rome, Italy
150 ISI Foundation, Turin, Italy
151 SONY CSL, Paris, France
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...