Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

S. Bordács, A. Butykai, B. G. Szigeti, J. S. White, R. Cubitt, A. O. Leonov, S. Widmann, D. Ehlers, H.-A. Krug von Nidda, V. Tsurkan, A. Loidl, I. Kézsmárki

ABSTRACT

The skyrmion lattice state (SkL), a crystal built of mesoscopic spin vortices, gains its stability via thermal fluctuations in all bulk skyrmion host materials known to date. Therefore, its existence is limited to a narrow temperature region below the paramagnetic state. This stability range can drastically increase in systems with restricted geometries, such as thin films, interfaces and nanowires. Thermal quenching can also promote the SkL as a metastable state over extended temperature ranges. Here, we demonstrate more generally that a proper choice of material parameters alone guarantees the thermodynamic stability of the SkL over the full temperature range below the paramagnetic state down to zero kelvin. We found that GaV4Se8, a polar magnet with easy-plane anisotropy, hosts a robust Néel-type SkL even in its ground state. Our supporting theory confirms that polar magnets with weak uniaxial anisotropy are ideal candidates to realize SkLs with wide stability ranges. More... »

PAGES

7584

References to SciGraph publications

  • 2011-09. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions in NATURE PHYSICS
  • 2016-05. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets in NATURE MATERIALS
  • 2015-11. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8 in NATURE MATERIALS
  • 2015-07. Large anisotropic deformation of skyrmions in strained crystal in NATURE NANOTECHNOLOGY
  • 2013-12. Topological properties and dynamics of magnetic skyrmions in NATURE NANOTECHNOLOGY
  • 2016-12. Robust metastable skyrmions and their triangular–square lattice structural transition in a high-temperature chiral magnet in NATURE MATERIALS
  • 2016-11-07. Electric-field-driven switching of individual magnetic skyrmions in NATURE NANOTECHNOLOGY
  • 2011-02. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe in NATURE MATERIALS
  • 2016-09. Heat-Treatment-Induced Switching of Magnetic States in the Doped Polar Semiconductor Ge1−xMnxTe in SCIENTIFIC REPORTS
  • 2017-12. Characteristics of ferroelectric-ferroelastic domains in Néel-type skyrmion host GaV4S8 in SCIENTIFIC REPORTS
  • 2010-06. Real-space observation of a two-dimensional skyrmion crystal in NATURE
  • 2013-11. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures in NATURE NANOTECHNOLOGY
  • 2016-05. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures in NATURE NANOTECHNOLOGY
  • 2013-10. Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin–orbit coupling in NATURE NANOTECHNOLOGY
  • 2014-05. Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography in NATURE NANOTECHNOLOGY
  • 2015-12. Uniaxial stress control of skyrmion phase in NATURE COMMUNICATIONS
  • 2013-03. Skyrmions on the track in NATURE NANOTECHNOLOGY
  • 2015-12. Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet in NATURE COMMUNICATIONS
  • 2015-12. Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance in NATURE NANOTECHNOLOGY
  • 2015-12. A new class of chiral materials hosting magnetic skyrmions beyond room temperature in NATURE COMMUNICATIONS
  • 2006-08. Spontaneous skyrmion ground states in magnetic metals in NATURE
  • 2012-04. Emergent electrodynamics of skyrmions in a chiral magnet in NATURE PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-017-07996-x

    DOI

    http://dx.doi.org/10.1038/s41598-017-07996-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091025364

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28790441


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hungarian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.5018.c", 
              "name": [
                "Department of Physics, Budapest University of Technology and Economics and MTA-BME Lend\u00fclet Magneto-optical Spectroscopy Research Group, 1111, Budapest, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bord\u00e1cs", 
            "givenName": "S.", 
            "id": "sg:person.0664730377.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664730377.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hungarian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.5018.c", 
              "name": [
                "Department of Physics, Budapest University of Technology and Economics and MTA-BME Lend\u00fclet Magneto-optical Spectroscopy Research Group, 1111, Budapest, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Butykai", 
            "givenName": "A.", 
            "id": "sg:person.0624765412.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624765412.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hungarian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.5018.c", 
              "name": [
                "Department of Physics, Budapest University of Technology and Economics and MTA-BME Lend\u00fclet Magneto-optical Spectroscopy Research Group, 1111, Budapest, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Szigeti", 
            "givenName": "B. G.", 
            "id": "sg:person.011505317257.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505317257.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Paul Scherrer Institute", 
              "id": "https://www.grid.ac/institutes/grid.5991.4", 
              "name": [
                "Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232, Villigen, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "White", 
            "givenName": "J. S.", 
            "id": "sg:person.015423034715.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015423034715.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut Laue-Langevin", 
              "id": "https://www.grid.ac/institutes/grid.156520.5", 
              "name": [
                "Institut Laue-Langevin, 6 rue Jules Horowitz, 38042, Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cubitt", 
            "givenName": "R.", 
            "id": "sg:person.0631770565.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631770565.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hiroshima University", 
              "id": "https://www.grid.ac/institutes/grid.257022.0", 
              "name": [
                "Center for Chiral Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Hiroshima, Japan", 
                "Department of Chemistry, Faculty of Science, Hiroshima University Kagamiyama, Higashi Hiroshima, 739-8526, Hiroshima, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Leonov", 
            "givenName": "A. O.", 
            "id": "sg:person.01234076325.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234076325.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Augsburg", 
              "id": "https://www.grid.ac/institutes/grid.7307.3", 
              "name": [
                "Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Widmann", 
            "givenName": "S.", 
            "id": "sg:person.01144330352.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144330352.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Augsburg", 
              "id": "https://www.grid.ac/institutes/grid.7307.3", 
              "name": [
                "Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ehlers", 
            "givenName": "D.", 
            "id": "sg:person.01067504471.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067504471.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Augsburg", 
              "id": "https://www.grid.ac/institutes/grid.7307.3", 
              "name": [
                "Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "von Nidda", 
            "givenName": "H.-A. Krug", 
            "id": "sg:person.014215036002.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014215036002.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Applied Physics", 
              "id": "https://www.grid.ac/institutes/grid.450974.b", 
              "name": [
                "Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany", 
                "Institute of Applied Physics, Academy of Sciences of Moldova, 2028, Chisinau, MD, Republic of Moldova"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tsurkan", 
            "givenName": "V.", 
            "id": "sg:person.01324560542.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324560542.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Augsburg", 
              "id": "https://www.grid.ac/institutes/grid.7307.3", 
              "name": [
                "Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Loidl", 
            "givenName": "A.", 
            "id": "sg:person.0621561650.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621561650.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Augsburg", 
              "id": "https://www.grid.ac/institutes/grid.7307.3", 
              "name": [
                "Department of Physics, Budapest University of Technology and Economics and MTA-BME Lend\u00fclet Magneto-optical Spectroscopy Research Group, 1111, Budapest, Hungary", 
                "Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "K\u00e9zsm\u00e1rki", 
            "givenName": "I.", 
            "id": "sg:person.01361122437.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361122437.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmat2916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000753350", 
              "https://doi.org/10.1038/nmat2916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/27/50/503001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002165926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002372350", 
              "https://doi.org/10.1038/ncomms8638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/22/16/164207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005436705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/22/16/164207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005436705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006278120", 
              "https://doi.org/10.1038/nnano.2015.218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1240573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006493980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006853479", 
              "https://doi.org/10.1038/nnano.2013.29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009287387", 
              "https://doi.org/10.1038/nmat4593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009819854", 
              "https://doi.org/10.1038/nnano.2014.52"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010544994", 
              "https://doi.org/10.1038/nmat4402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.052403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010987650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.052403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010987650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.83.100408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013422307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.83.100408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013422307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-6596/303/1/012105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016913006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017462081", 
              "https://doi.org/10.1038/nphys2045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcrysgro.2010.10.135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022614191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022657870", 
              "https://doi.org/10.1038/nnano.2013.210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14786435.2016.1253885", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022751597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026381550", 
              "https://doi.org/10.1038/nature05056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026381550", 
              "https://doi.org/10.1038/nature05056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4943757", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026765733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2016.234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029274408", 
              "https://doi.org/10.1038/nnano.2016.234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.81.041203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029452091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.81.041203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029452091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl300073m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029557398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029936903", 
              "https://doi.org/10.1038/nphys2231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.094411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030120700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.094411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030120700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032545899", 
              "https://doi.org/10.1038/ncomms9539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.107203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032835809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.107203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032835809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034080992", 
              "https://doi.org/10.1038/nature09124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034080992", 
              "https://doi.org/10.1038/nature09124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035968585", 
              "https://doi.org/10.1038/nnano.2015.315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035968585", 
              "https://doi.org/10.1038/nnano.2015.315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.4.031045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036592684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.4.031045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036592684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040341496", 
              "https://doi.org/10.1038/nnano.2015.113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4752", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042179526", 
              "https://doi.org/10.1038/nmat4752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep25748", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042644788", 
              "https://doi.org/10.1038/srep25748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.91.224407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044952869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.91.224407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044952869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045535042", 
              "https://doi.org/10.1038/ncomms9275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.017206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046824485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.017206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046824485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-8853(94)90046-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049517393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-8853(94)90046-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049517393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051373373", 
              "https://doi.org/10.1038/nnano.2013.174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052510644", 
              "https://doi.org/10.1038/nnano.2013.243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm001099b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055408228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm001099b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055408228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl5001899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056220638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1361-648x/aa4e7e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059133495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.93.020404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060648505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.93.020404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060648505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.94.014406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060651012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.94.014406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060651012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.94.060104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060651528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.94.060104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060651528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.217206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060759069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.217206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060759069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.077202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060762997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.077202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060762997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.177203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060763597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.177203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060763597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.207601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.207601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/sciadv.1500916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062439954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1166767", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062459116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1214143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062465664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep44663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084132543", 
              "https://doi.org/10.1038/srep44663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.95.180410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085775480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.95.180410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085775480"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "The skyrmion lattice state (SkL), a crystal built of mesoscopic spin vortices, gains its stability via thermal fluctuations in all bulk skyrmion host materials known to date. Therefore, its existence is limited to a narrow temperature region below the paramagnetic state. This stability range can drastically increase in systems with restricted geometries, such as thin films, interfaces and nanowires. Thermal quenching can also promote the SkL as a metastable state over extended temperature ranges. Here, we demonstrate more generally that a proper choice of material parameters alone guarantees the thermodynamic stability of the SkL over the full temperature range below the paramagnetic state down to zero kelvin. We found that GaV4Se8, a polar magnet with easy-plane anisotropy, hosts a robust N\u00e9el-type SkL even in its ground state. Our supporting theory confirms that polar magnets with weak uniaxial anisotropy are ideal candidates to realize SkLs with wide stability ranges.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-017-07996-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5213537", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5232447", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet", 
        "pagination": "7584", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1aa1a720e3ab94ad30b1b40e38a237f379574d86b8c95bcc67fcfa423129cf75"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28790441"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-017-07996-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091025364"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-017-07996-x", 
          "https://app.dimensions.ai/details/publication/pub.1091025364"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000493.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-017-07996-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07996-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07996-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07996-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07996-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    348 TRIPLES      21 PREDICATES      82 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-017-07996-x schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N0ec9cf3e7a4f45118652bd65a047d425
    4 schema:citation sg:pub.10.1038/nature05056
    5 sg:pub.10.1038/nature09124
    6 sg:pub.10.1038/ncomms8638
    7 sg:pub.10.1038/ncomms9275
    8 sg:pub.10.1038/ncomms9539
    9 sg:pub.10.1038/nmat2916
    10 sg:pub.10.1038/nmat4402
    11 sg:pub.10.1038/nmat4593
    12 sg:pub.10.1038/nmat4752
    13 sg:pub.10.1038/nnano.2013.174
    14 sg:pub.10.1038/nnano.2013.210
    15 sg:pub.10.1038/nnano.2013.243
    16 sg:pub.10.1038/nnano.2013.29
    17 sg:pub.10.1038/nnano.2014.52
    18 sg:pub.10.1038/nnano.2015.113
    19 sg:pub.10.1038/nnano.2015.218
    20 sg:pub.10.1038/nnano.2015.315
    21 sg:pub.10.1038/nnano.2016.234
    22 sg:pub.10.1038/nphys2045
    23 sg:pub.10.1038/nphys2231
    24 sg:pub.10.1038/srep25748
    25 sg:pub.10.1038/srep44663
    26 https://doi.org/10.1016/0304-8853(94)90046-9
    27 https://doi.org/10.1016/j.jcrysgro.2010.10.135
    28 https://doi.org/10.1021/cm001099b
    29 https://doi.org/10.1021/nl300073m
    30 https://doi.org/10.1021/nl5001899
    31 https://doi.org/10.1063/1.4943757
    32 https://doi.org/10.1080/14786435.2016.1253885
    33 https://doi.org/10.1088/0953-8984/22/16/164207
    34 https://doi.org/10.1088/0953-8984/27/50/503001
    35 https://doi.org/10.1088/1361-648x/aa4e7e
    36 https://doi.org/10.1088/1742-6596/303/1/012105
    37 https://doi.org/10.1103/physrevb.81.041203
    38 https://doi.org/10.1103/physrevb.82.052403
    39 https://doi.org/10.1103/physrevb.83.100408
    40 https://doi.org/10.1103/physrevb.89.094411
    41 https://doi.org/10.1103/physrevb.91.224407
    42 https://doi.org/10.1103/physrevb.93.020404
    43 https://doi.org/10.1103/physrevb.94.014406
    44 https://doi.org/10.1103/physrevb.94.060104
    45 https://doi.org/10.1103/physrevb.95.180410
    46 https://doi.org/10.1103/physrevlett.107.217206
    47 https://doi.org/10.1103/physrevlett.108.017206
    48 https://doi.org/10.1103/physrevlett.113.077202
    49 https://doi.org/10.1103/physrevlett.113.107203
    50 https://doi.org/10.1103/physrevlett.114.177203
    51 https://doi.org/10.1103/physrevlett.115.207601
    52 https://doi.org/10.1103/physrevx.4.031045
    53 https://doi.org/10.1126/sciadv.1500916
    54 https://doi.org/10.1126/science.1166767
    55 https://doi.org/10.1126/science.1214143
    56 https://doi.org/10.1126/science.1240573
    57 schema:datePublished 2017-12
    58 schema:datePublishedReg 2017-12-01
    59 schema:description The skyrmion lattice state (SkL), a crystal built of mesoscopic spin vortices, gains its stability via thermal fluctuations in all bulk skyrmion host materials known to date. Therefore, its existence is limited to a narrow temperature region below the paramagnetic state. This stability range can drastically increase in systems with restricted geometries, such as thin films, interfaces and nanowires. Thermal quenching can also promote the SkL as a metastable state over extended temperature ranges. Here, we demonstrate more generally that a proper choice of material parameters alone guarantees the thermodynamic stability of the SkL over the full temperature range below the paramagnetic state down to zero kelvin. We found that GaV<sub>4</sub>Se<sub>8</sub>, a polar magnet with easy-plane anisotropy, hosts a robust Néel-type SkL even in its ground state. Our supporting theory confirms that polar magnets with weak uniaxial anisotropy are ideal candidates to realize SkLs with wide stability ranges.
    60 schema:genre research_article
    61 schema:inLanguage en
    62 schema:isAccessibleForFree true
    63 schema:isPartOf N0f104ff538fc4e41b4b0fe87320d43cd
    64 N321ab643663b48408432058b16ce62e6
    65 sg:journal.1045337
    66 schema:name Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet
    67 schema:pagination 7584
    68 schema:productId N0da9f9f169194bb0b73c275b209aabad
    69 N3280cecd3bcf43eb999e9d7dd11ddf77
    70 Na33c9eceb8e74b3d9e3b13fee30cd78c
    71 Naa32f72f96ce4a028d5f2e2f75203ce4
    72 Nfe1abec264db418fba6ccac7e5dfccb5
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091025364
    74 https://doi.org/10.1038/s41598-017-07996-x
    75 schema:sdDatePublished 2019-04-10T14:56
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher N8a686f1214774666bbf85fc108e6b3ce
    78 schema:url https://www.nature.com/articles/s41598-017-07996-x
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N0da9f9f169194bb0b73c275b209aabad schema:name readcube_id
    83 schema:value 1aa1a720e3ab94ad30b1b40e38a237f379574d86b8c95bcc67fcfa423129cf75
    84 rdf:type schema:PropertyValue
    85 N0ec9cf3e7a4f45118652bd65a047d425 rdf:first sg:person.0664730377.88
    86 rdf:rest N5f58ab43112e464c8b2ccbd1def78b54
    87 N0f104ff538fc4e41b4b0fe87320d43cd schema:volumeNumber 7
    88 rdf:type schema:PublicationVolume
    89 N321ab643663b48408432058b16ce62e6 schema:issueNumber 1
    90 rdf:type schema:PublicationIssue
    91 N3280cecd3bcf43eb999e9d7dd11ddf77 schema:name dimensions_id
    92 schema:value pub.1091025364
    93 rdf:type schema:PropertyValue
    94 N366039f2ce9447cd956f29df4c46be00 rdf:first sg:person.01361122437.05
    95 rdf:rest rdf:nil
    96 N58bc52f57a4141f4b702d32b210c535e rdf:first sg:person.0631770565.27
    97 rdf:rest N7490801591904dbdaef6eb609c5d3bed
    98 N5f58ab43112e464c8b2ccbd1def78b54 rdf:first sg:person.0624765412.92
    99 rdf:rest Nb3957d3a2baf40e6ae3217c0cec2d98e
    100 N7213907bd9d34ff6b3e8be9f2c17feb1 rdf:first sg:person.0621561650.46
    101 rdf:rest N366039f2ce9447cd956f29df4c46be00
    102 N7490801591904dbdaef6eb609c5d3bed rdf:first sg:person.01234076325.72
    103 rdf:rest N7be46d5104554fb1ac2fc42bbc3a1ed5
    104 N7be46d5104554fb1ac2fc42bbc3a1ed5 rdf:first sg:person.01144330352.18
    105 rdf:rest Na24d2efa3cfe44a189a0a31990c97fd0
    106 N8a686f1214774666bbf85fc108e6b3ce schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 N989edee81403415682ed100de8901aa9 rdf:first sg:person.01324560542.16
    109 rdf:rest N7213907bd9d34ff6b3e8be9f2c17feb1
    110 Na24d2efa3cfe44a189a0a31990c97fd0 rdf:first sg:person.01067504471.46
    111 rdf:rest Nd255240b0add4bb4bf1f7a3dbab7a9e0
    112 Na33c9eceb8e74b3d9e3b13fee30cd78c schema:name nlm_unique_id
    113 schema:value 101563288
    114 rdf:type schema:PropertyValue
    115 Naa32f72f96ce4a028d5f2e2f75203ce4 schema:name pubmed_id
    116 schema:value 28790441
    117 rdf:type schema:PropertyValue
    118 Nb3957d3a2baf40e6ae3217c0cec2d98e rdf:first sg:person.011505317257.21
    119 rdf:rest Ne306d52f9ddc4922ac6b7cf3ce2a1687
    120 Nd255240b0add4bb4bf1f7a3dbab7a9e0 rdf:first sg:person.014215036002.27
    121 rdf:rest N989edee81403415682ed100de8901aa9
    122 Ne306d52f9ddc4922ac6b7cf3ce2a1687 rdf:first sg:person.015423034715.39
    123 rdf:rest N58bc52f57a4141f4b702d32b210c535e
    124 Nfe1abec264db418fba6ccac7e5dfccb5 schema:name doi
    125 schema:value 10.1038/s41598-017-07996-x
    126 rdf:type schema:PropertyValue
    127 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Engineering
    129 rdf:type schema:DefinedTerm
    130 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Materials Engineering
    132 rdf:type schema:DefinedTerm
    133 sg:grant.5213537 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-07996-x
    134 rdf:type schema:MonetaryGrant
    135 sg:grant.5232447 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-07996-x
    136 rdf:type schema:MonetaryGrant
    137 sg:journal.1045337 schema:issn 2045-2322
    138 schema:name Scientific Reports
    139 rdf:type schema:Periodical
    140 sg:person.01067504471.46 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
    141 schema:familyName Ehlers
    142 schema:givenName D.
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067504471.46
    144 rdf:type schema:Person
    145 sg:person.01144330352.18 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
    146 schema:familyName Widmann
    147 schema:givenName S.
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144330352.18
    149 rdf:type schema:Person
    150 sg:person.011505317257.21 schema:affiliation https://www.grid.ac/institutes/grid.5018.c
    151 schema:familyName Szigeti
    152 schema:givenName B. G.
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505317257.21
    154 rdf:type schema:Person
    155 sg:person.01234076325.72 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
    156 schema:familyName Leonov
    157 schema:givenName A. O.
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234076325.72
    159 rdf:type schema:Person
    160 sg:person.01324560542.16 schema:affiliation https://www.grid.ac/institutes/grid.450974.b
    161 schema:familyName Tsurkan
    162 schema:givenName V.
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324560542.16
    164 rdf:type schema:Person
    165 sg:person.01361122437.05 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
    166 schema:familyName Kézsmárki
    167 schema:givenName I.
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361122437.05
    169 rdf:type schema:Person
    170 sg:person.014215036002.27 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
    171 schema:familyName von Nidda
    172 schema:givenName H.-A. Krug
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014215036002.27
    174 rdf:type schema:Person
    175 sg:person.015423034715.39 schema:affiliation https://www.grid.ac/institutes/grid.5991.4
    176 schema:familyName White
    177 schema:givenName J. S.
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015423034715.39
    179 rdf:type schema:Person
    180 sg:person.0621561650.46 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
    181 schema:familyName Loidl
    182 schema:givenName A.
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621561650.46
    184 rdf:type schema:Person
    185 sg:person.0624765412.92 schema:affiliation https://www.grid.ac/institutes/grid.5018.c
    186 schema:familyName Butykai
    187 schema:givenName A.
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624765412.92
    189 rdf:type schema:Person
    190 sg:person.0631770565.27 schema:affiliation https://www.grid.ac/institutes/grid.156520.5
    191 schema:familyName Cubitt
    192 schema:givenName R.
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631770565.27
    194 rdf:type schema:Person
    195 sg:person.0664730377.88 schema:affiliation https://www.grid.ac/institutes/grid.5018.c
    196 schema:familyName Bordács
    197 schema:givenName S.
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664730377.88
    199 rdf:type schema:Person
    200 sg:pub.10.1038/nature05056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026381550
    201 https://doi.org/10.1038/nature05056
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature09124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080992
    204 https://doi.org/10.1038/nature09124
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/ncomms8638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002372350
    207 https://doi.org/10.1038/ncomms8638
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/ncomms9275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045535042
    210 https://doi.org/10.1038/ncomms9275
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/ncomms9539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032545899
    213 https://doi.org/10.1038/ncomms9539
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nmat2916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000753350
    216 https://doi.org/10.1038/nmat2916
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nmat4402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010544994
    219 https://doi.org/10.1038/nmat4402
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nmat4593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009287387
    222 https://doi.org/10.1038/nmat4593
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nmat4752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042179526
    225 https://doi.org/10.1038/nmat4752
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nnano.2013.174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051373373
    228 https://doi.org/10.1038/nnano.2013.174
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nnano.2013.210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022657870
    231 https://doi.org/10.1038/nnano.2013.210
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nnano.2013.243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052510644
    234 https://doi.org/10.1038/nnano.2013.243
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nnano.2013.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006853479
    237 https://doi.org/10.1038/nnano.2013.29
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nnano.2014.52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009819854
    240 https://doi.org/10.1038/nnano.2014.52
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nnano.2015.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040341496
    243 https://doi.org/10.1038/nnano.2015.113
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nnano.2015.218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006278120
    246 https://doi.org/10.1038/nnano.2015.218
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nnano.2015.315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035968585
    249 https://doi.org/10.1038/nnano.2015.315
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nnano.2016.234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029274408
    252 https://doi.org/10.1038/nnano.2016.234
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nphys2045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017462081
    255 https://doi.org/10.1038/nphys2045
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nphys2231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029936903
    258 https://doi.org/10.1038/nphys2231
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/srep25748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042644788
    261 https://doi.org/10.1038/srep25748
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/srep44663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084132543
    264 https://doi.org/10.1038/srep44663
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1016/0304-8853(94)90046-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049517393
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1016/j.jcrysgro.2010.10.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022614191
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1021/cm001099b schema:sameAs https://app.dimensions.ai/details/publication/pub.1055408228
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1021/nl300073m schema:sameAs https://app.dimensions.ai/details/publication/pub.1029557398
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1021/nl5001899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220638
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1063/1.4943757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026765733
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1080/14786435.2016.1253885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022751597
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1088/0953-8984/22/16/164207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005436705
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1088/0953-8984/27/50/503001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002165926
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1088/1361-648x/aa4e7e schema:sameAs https://app.dimensions.ai/details/publication/pub.1059133495
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1088/1742-6596/303/1/012105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016913006
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1103/physrevb.81.041203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029452091
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1103/physrevb.82.052403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010987650
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1103/physrevb.83.100408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013422307
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1103/physrevb.89.094411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030120700
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1103/physrevb.91.224407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044952869
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1103/physrevb.93.020404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060648505
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1103/physrevb.94.014406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060651012
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1103/physrevb.94.060104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060651528
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1103/physrevb.95.180410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085775480
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1103/physrevlett.107.217206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759069
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1103/physrevlett.108.017206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046824485
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1103/physrevlett.113.077202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060762997
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1103/physrevlett.113.107203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032835809
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1103/physrevlett.114.177203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763597
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1103/physrevlett.115.207601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764478
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1103/physrevx.4.031045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036592684
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1126/sciadv.1500916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062439954
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1126/science.1166767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459116
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1126/science.1214143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465664
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1126/science.1240573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006493980
    327 rdf:type schema:CreativeWork
    328 https://www.grid.ac/institutes/grid.156520.5 schema:alternateName Institut Laue-Langevin
    329 schema:name Institut Laue-Langevin, 6 rue Jules Horowitz, 38042, Grenoble, France
    330 rdf:type schema:Organization
    331 https://www.grid.ac/institutes/grid.257022.0 schema:alternateName Hiroshima University
    332 schema:name Center for Chiral Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Hiroshima, Japan
    333 Department of Chemistry, Faculty of Science, Hiroshima University Kagamiyama, Higashi Hiroshima, 739-8526, Hiroshima, Japan
    334 rdf:type schema:Organization
    335 https://www.grid.ac/institutes/grid.450974.b schema:alternateName Institute of Applied Physics
    336 schema:name Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany
    337 Institute of Applied Physics, Academy of Sciences of Moldova, 2028, Chisinau, MD, Republic of Moldova
    338 rdf:type schema:Organization
    339 https://www.grid.ac/institutes/grid.5018.c schema:alternateName Hungarian Academy of Sciences
    340 schema:name Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Magneto-optical Spectroscopy Research Group, 1111, Budapest, Hungary
    341 rdf:type schema:Organization
    342 https://www.grid.ac/institutes/grid.5991.4 schema:alternateName Paul Scherrer Institute
    343 schema:name Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232, Villigen, Switzerland
    344 rdf:type schema:Organization
    345 https://www.grid.ac/institutes/grid.7307.3 schema:alternateName University of Augsburg
    346 schema:name Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Magneto-optical Spectroscopy Research Group, 1111, Budapest, Hungary
    347 Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany
    348 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...