Determination of critical cooling rates in metallic glass forming alloy libraries through laser spike annealing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-08-02

AUTHORS

Punnathat Bordeenithikasem, Jingbei Liu, Sebastian A. Kube, Yanglin Li, Tianxing Ma, B. Ellen Scanley, Christine C. Broadbridge, Joost J. Vlassak, Jonathan P. Singer, Jan Schroers

ABSTRACT

The glass forming ability (GFA) of metallic glasses (MGs) is quantified by the critical cooling rate (RC). Despite its key role in MG research, experimental challenges have limited measured RC to a minute fraction of known glass formers. We present a combinatorial approach to directly measure RC for large compositional ranges. This is realized through the use of compositionally-graded alloy libraries, which were photo-thermally heated by scanning laser spike annealing of an absorbing layer, then melted and cooled at various rates. Coupled with X-ray diffraction mapping, GFA is determined from direct RC measurements. We exemplify this technique for the Au-Cu-Si system, where we identify Au56Cu27Si17 as the alloy with the highest GFA. In general, this method enables measurements of RC over large compositional areas, which is powerful for materials discovery and, when correlating with chemistry and other properties, for a deeper understanding of MG formation. More... »

PAGES

7155

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-07719-2

DOI

http://dx.doi.org/10.1038/s41598-017-07719-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090947944

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28769093


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bordeenithikasem", 
        "givenName": "Punnathat", 
        "id": "sg:person.01240425127.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240425127.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jingbei", 
        "id": "sg:person.01262432721.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262432721.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kube", 
        "givenName": "Sebastian A.", 
        "id": "sg:person.014753013667.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014753013667.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yanglin", 
        "id": "sg:person.01053046230.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053046230.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Aerospace Engineering, Rutgers University, 08854, Piscataway, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, Rutgers University, 08854, Piscataway, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Tianxing", 
        "id": "sg:person.016345754667.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016345754667.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Southern Connecticut State University, 06515, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.263848.3", 
          "name": [
            "Department of Physics, Southern Connecticut State University, 06515, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scanley", 
        "givenName": "B. Ellen", 
        "id": "sg:person.01006137213.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006137213.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Southern Connecticut State University, 06515, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.263848.3", 
          "name": [
            "Department of Physics, Southern Connecticut State University, 06515, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Broadbridge", 
        "givenName": "Christine C.", 
        "id": "sg:person.01026237303.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026237303.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Engineering and Applied Science, Harvard University, 02138, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "School of Engineering and Applied Science, Harvard University, 02138, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vlassak", 
        "givenName": "Joost J.", 
        "id": "sg:person.0706715721.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706715721.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Aerospace Engineering, Rutgers University, 08854, Piscataway, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, Rutgers University, 08854, Piscataway, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singer", 
        "givenName": "Jonathan P.", 
        "id": "sg:person.0715052322.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715052322.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schroers", 
        "givenName": "Jan", 
        "id": "sg:person.01145527322.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13404-015-0167-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003356527", 
          "https://doi.org/10.1007/s13404-015-0167-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-015-2900-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011874727", 
          "https://doi.org/10.1007/s11661-015-2900-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03214796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044607887", 
          "https://doi.org/10.1007/bf03214796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep26950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022920064", 
          "https://doi.org/10.1038/srep26950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/187869b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018841532", 
          "https://doi.org/10.1038/187869b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000026098", 
          "https://doi.org/10.1038/ncomms9123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd3368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041527430", 
          "https://doi.org/10.1038/nrd3368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026325779", 
          "https://doi.org/10.1038/nmat3939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035817137", 
          "https://doi.org/10.1038/nmeth.2089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2010.0286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027214760", 
          "https://doi.org/10.1557/jmr.2010.0286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010259132", 
          "https://doi.org/10.1038/nature13617"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08-02", 
    "datePublishedReg": "2017-08-02", 
    "description": "The glass forming ability (GFA) of metallic glasses (MGs) is quantified by the critical cooling rate (RC). Despite its key role in MG research, experimental challenges have limited measured RC to a minute fraction of known glass formers. We present a combinatorial approach to directly measure RC for large compositional ranges. This is realized through the use of compositionally-graded alloy libraries, which were photo-thermally heated by scanning laser spike annealing of an absorbing layer, then melted and cooled at various rates. Coupled with X-ray diffraction mapping, GFA is determined from direct RC measurements. We exemplify this technique for the Au-Cu-Si system, where we identify Au56Cu27Si17 as the alloy with the highest GFA. In general, this method enables measurements of RC over large compositional areas, which is powerful for materials discovery and, when correlating with chemistry and other properties, for a deeper understanding of MG formation.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-017-07719-2", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3127424", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3850692", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "critical cooling rate", 
      "metallic glasses", 
      "alloy libraries", 
      "cooling rate", 
      "X-ray diffraction mapping", 
      "high GFA", 
      "Si system", 
      "diffraction mapping", 
      "annealing", 
      "glass", 
      "materials discovery", 
      "Measurements of Rcs", 
      "RCS measurements", 
      "GFA", 
      "compositional area", 
      "large compositional range", 
      "alloy", 
      "laser", 
      "glass formers", 
      "Mg research", 
      "Au-Cu", 
      "RC", 
      "compositional range", 
      "measurements", 
      "layer", 
      "properties", 
      "rate", 
      "MG formation", 
      "minute fraction", 
      "range", 
      "technique", 
      "system", 
      "method", 
      "experimental challenge", 
      "fraction", 
      "deeper understanding", 
      "formation", 
      "combinatorial approach", 
      "photos", 
      "determination", 
      "approach", 
      "formers", 
      "area", 
      "chemistry", 
      "mapping", 
      "use", 
      "key role", 
      "challenges", 
      "ability", 
      "research", 
      "understanding", 
      "discovery", 
      "library", 
      "role"
    ], 
    "name": "Determination of critical cooling rates in metallic glass forming alloy libraries through laser spike annealing", 
    "pagination": "7155", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090947944"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-07719-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28769093"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-07719-2", 
      "https://app.dimensions.ai/details/publication/pub.1090947944"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_730.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-017-07719-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07719-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07719-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07719-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07719-2'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      90 URIs      71 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-07719-2 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N72775c97b6554fc5a3adb1a0fbb009dc
4 schema:citation sg:pub.10.1007/bf03214796
5 sg:pub.10.1007/s11661-015-2900-x
6 sg:pub.10.1007/s13404-015-0167-z
7 sg:pub.10.1038/187869b0
8 sg:pub.10.1038/nature13617
9 sg:pub.10.1038/ncomms9123
10 sg:pub.10.1038/nmat3939
11 sg:pub.10.1038/nmeth.2089
12 sg:pub.10.1038/nrd3368
13 sg:pub.10.1038/srep26950
14 sg:pub.10.1557/jmr.2010.0286
15 schema:datePublished 2017-08-02
16 schema:datePublishedReg 2017-08-02
17 schema:description The glass forming ability (GFA) of metallic glasses (MGs) is quantified by the critical cooling rate (RC). Despite its key role in MG research, experimental challenges have limited measured RC to a minute fraction of known glass formers. We present a combinatorial approach to directly measure RC for large compositional ranges. This is realized through the use of compositionally-graded alloy libraries, which were photo-thermally heated by scanning laser spike annealing of an absorbing layer, then melted and cooled at various rates. Coupled with X-ray diffraction mapping, GFA is determined from direct RC measurements. We exemplify this technique for the Au-Cu-Si system, where we identify Au56Cu27Si17 as the alloy with the highest GFA. In general, this method enables measurements of RC over large compositional areas, which is powerful for materials discovery and, when correlating with chemistry and other properties, for a deeper understanding of MG formation.
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf N3931d70d798a4e2ba45133af8f9ed065
21 Nab9a3c40c133414eb4dfd08017d7b677
22 sg:journal.1045337
23 schema:keywords Au-Cu
24 GFA
25 MG formation
26 Measurements of Rcs
27 Mg research
28 RC
29 RCS measurements
30 Si system
31 X-ray diffraction mapping
32 ability
33 alloy
34 alloy libraries
35 annealing
36 approach
37 area
38 challenges
39 chemistry
40 combinatorial approach
41 compositional area
42 compositional range
43 cooling rate
44 critical cooling rate
45 deeper understanding
46 determination
47 diffraction mapping
48 discovery
49 experimental challenge
50 formation
51 formers
52 fraction
53 glass
54 glass formers
55 high GFA
56 key role
57 large compositional range
58 laser
59 layer
60 library
61 mapping
62 materials discovery
63 measurements
64 metallic glasses
65 method
66 minute fraction
67 photos
68 properties
69 range
70 rate
71 research
72 role
73 system
74 technique
75 understanding
76 use
77 schema:name Determination of critical cooling rates in metallic glass forming alloy libraries through laser spike annealing
78 schema:pagination 7155
79 schema:productId N32b2767dd4fd4754b978d88e159ff85b
80 N60ba91eccc004d36b7e566a56823dbb8
81 Nfdfbe5d407584111afc7737a80e8bfb5
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090947944
83 https://doi.org/10.1038/s41598-017-07719-2
84 schema:sdDatePublished 2022-10-01T06:43
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N55153dea898544b0a0e7dd8fd40de32e
87 schema:url https://doi.org/10.1038/s41598-017-07719-2
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N32b2767dd4fd4754b978d88e159ff85b schema:name doi
92 schema:value 10.1038/s41598-017-07719-2
93 rdf:type schema:PropertyValue
94 N38b6cb6b897f4b9f90fad095b69c3519 rdf:first sg:person.01262432721.25
95 rdf:rest Nc32cc12a13044991b36a3df574a419f0
96 N3931d70d798a4e2ba45133af8f9ed065 schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 N3a609be5e94542fc849051ba0872da84 rdf:first sg:person.016345754667.11
99 rdf:rest Nf676e01379a444de9b7bcb7fb20ebc44
100 N55153dea898544b0a0e7dd8fd40de32e schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N591d732efa1143d9b94f9859ae2669ee rdf:first sg:person.01053046230.52
103 rdf:rest N3a609be5e94542fc849051ba0872da84
104 N60ba91eccc004d36b7e566a56823dbb8 schema:name pubmed_id
105 schema:value 28769093
106 rdf:type schema:PropertyValue
107 N72775c97b6554fc5a3adb1a0fbb009dc rdf:first sg:person.01240425127.58
108 rdf:rest N38b6cb6b897f4b9f90fad095b69c3519
109 N8456d25a2fc84f74ba74e4c93ddcb38c rdf:first sg:person.0706715721.58
110 rdf:rest Nb799f16609ec4efca4c4a7d167005658
111 Nab9a3c40c133414eb4dfd08017d7b677 schema:volumeNumber 7
112 rdf:type schema:PublicationVolume
113 Nb799f16609ec4efca4c4a7d167005658 rdf:first sg:person.0715052322.41
114 rdf:rest Ndfc11801ff3749a48ff0c2766890f7d0
115 Nc32cc12a13044991b36a3df574a419f0 rdf:first sg:person.014753013667.30
116 rdf:rest N591d732efa1143d9b94f9859ae2669ee
117 Ndfc11801ff3749a48ff0c2766890f7d0 rdf:first sg:person.01145527322.19
118 rdf:rest rdf:nil
119 Ne67bac94512442b68f206654003bb0ba rdf:first sg:person.01026237303.34
120 rdf:rest N8456d25a2fc84f74ba74e4c93ddcb38c
121 Nf676e01379a444de9b7bcb7fb20ebc44 rdf:first sg:person.01006137213.29
122 rdf:rest Ne67bac94512442b68f206654003bb0ba
123 Nfdfbe5d407584111afc7737a80e8bfb5 schema:name dimensions_id
124 schema:value pub.1090947944
125 rdf:type schema:PropertyValue
126 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
127 schema:name Engineering
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
130 schema:name Materials Engineering
131 rdf:type schema:DefinedTerm
132 sg:grant.3127424 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-07719-2
133 rdf:type schema:MonetaryGrant
134 sg:grant.3850692 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-07719-2
135 rdf:type schema:MonetaryGrant
136 sg:journal.1045337 schema:issn 2045-2322
137 schema:name Scientific Reports
138 schema:publisher Springer Nature
139 rdf:type schema:Periodical
140 sg:person.01006137213.29 schema:affiliation grid-institutes:grid.263848.3
141 schema:familyName Scanley
142 schema:givenName B. Ellen
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006137213.29
144 rdf:type schema:Person
145 sg:person.01026237303.34 schema:affiliation grid-institutes:grid.263848.3
146 schema:familyName Broadbridge
147 schema:givenName Christine C.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026237303.34
149 rdf:type schema:Person
150 sg:person.01053046230.52 schema:affiliation grid-institutes:grid.47100.32
151 schema:familyName Li
152 schema:givenName Yanglin
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053046230.52
154 rdf:type schema:Person
155 sg:person.01145527322.19 schema:affiliation grid-institutes:grid.47100.32
156 schema:familyName Schroers
157 schema:givenName Jan
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19
159 rdf:type schema:Person
160 sg:person.01240425127.58 schema:affiliation grid-institutes:grid.47100.32
161 schema:familyName Bordeenithikasem
162 schema:givenName Punnathat
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240425127.58
164 rdf:type schema:Person
165 sg:person.01262432721.25 schema:affiliation grid-institutes:grid.47100.32
166 schema:familyName Liu
167 schema:givenName Jingbei
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262432721.25
169 rdf:type schema:Person
170 sg:person.014753013667.30 schema:affiliation grid-institutes:grid.47100.32
171 schema:familyName Kube
172 schema:givenName Sebastian A.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014753013667.30
174 rdf:type schema:Person
175 sg:person.016345754667.11 schema:affiliation grid-institutes:grid.430387.b
176 schema:familyName Ma
177 schema:givenName Tianxing
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016345754667.11
179 rdf:type schema:Person
180 sg:person.0706715721.58 schema:affiliation grid-institutes:grid.38142.3c
181 schema:familyName Vlassak
182 schema:givenName Joost J.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706715721.58
184 rdf:type schema:Person
185 sg:person.0715052322.41 schema:affiliation grid-institutes:grid.430387.b
186 schema:familyName Singer
187 schema:givenName Jonathan P.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715052322.41
189 rdf:type schema:Person
190 sg:pub.10.1007/bf03214796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044607887
191 https://doi.org/10.1007/bf03214796
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s11661-015-2900-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011874727
194 https://doi.org/10.1007/s11661-015-2900-x
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s13404-015-0167-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1003356527
197 https://doi.org/10.1007/s13404-015-0167-z
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/187869b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018841532
200 https://doi.org/10.1038/187869b0
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nature13617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010259132
203 https://doi.org/10.1038/nature13617
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/ncomms9123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000026098
206 https://doi.org/10.1038/ncomms9123
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nmat3939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026325779
209 https://doi.org/10.1038/nmat3939
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nmeth.2089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035817137
212 https://doi.org/10.1038/nmeth.2089
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nrd3368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041527430
215 https://doi.org/10.1038/nrd3368
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/srep26950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022920064
218 https://doi.org/10.1038/srep26950
219 rdf:type schema:CreativeWork
220 sg:pub.10.1557/jmr.2010.0286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027214760
221 https://doi.org/10.1557/jmr.2010.0286
222 rdf:type schema:CreativeWork
223 grid-institutes:grid.263848.3 schema:alternateName Department of Physics, Southern Connecticut State University, 06515, New Haven, Connecticut, USA
224 schema:name Department of Physics, Southern Connecticut State University, 06515, New Haven, Connecticut, USA
225 rdf:type schema:Organization
226 grid-institutes:grid.38142.3c schema:alternateName School of Engineering and Applied Science, Harvard University, 02138, Cambridge, Massachusetts, USA
227 schema:name School of Engineering and Applied Science, Harvard University, 02138, Cambridge, Massachusetts, USA
228 rdf:type schema:Organization
229 grid-institutes:grid.430387.b schema:alternateName Department of Mechanical and Aerospace Engineering, Rutgers University, 08854, Piscataway, New Jersey, USA
230 schema:name Department of Mechanical and Aerospace Engineering, Rutgers University, 08854, Piscataway, New Jersey, USA
231 rdf:type schema:Organization
232 grid-institutes:grid.47100.32 schema:alternateName Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA
233 schema:name Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...