Discovery of novel therapeutic properties of drugs from transcriptional responses based on multi-label classification View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Lingwei Xie, Song He, Yuqi Wen, Xiaochen Bo, Zhongnan Zhang

ABSTRACT

Drug repositioning strategies have improved substantially in recent years. At present, two advances are poised to facilitate new strategies. First, the LINCS project can provide rich transcriptome data that reflect the responses of cells upon exposure to various drugs. Second, machine learning algorithms have been applied successfully in biomedical research. In this paper, we developed a systematic method to discover novel indications for existing drugs by approaching drug repositioning as a multi-label classification task and used a Softmax regression model to predict previously unrecognized therapeutic properties of drugs based on LINCS transcriptome data. This approach to complete the said task has not been achieved in previous studies. By performing in silico comparison, we demonstrated that the proposed Softmax method showed markedly superior performance over those of other methods. Once fully trained, the method showed a training accuracy exceeding 80% and a validation accuracy of approximately 70%. We generated a highly credible set of 98 drugs with high potential to be repositioned for novel therapeutic purposes. Our case studies included zonisamide and brinzolamide, which were originally developed to treat indications of the nervous system and sensory organs, respectively. Both drugs were repurposed to the cardiovascular category. More... »

PAGES

7136

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-07705-8

DOI

http://dx.doi.org/10.1038/s41598-017-07705-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090943001

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28769090


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pharmacology and Pharmaceutical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Discovery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Repositioning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcriptome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "Software School, Xiamen University, 361005, Xiamen Fujian, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Lingwei", 
        "id": "sg:person.011121416067.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011121416067.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Beijing Institute of Radiation Medicine, 100850, Beijing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Song", 
        "id": "sg:person.01214723367.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214723367.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Beijing Institute of Radiation Medicine, 100850, Beijing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wen", 
        "givenName": "Yuqi", 
        "id": "sg:person.012514357067.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012514357067.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Beijing Institute of Radiation Medicine, 100850, Beijing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bo", 
        "givenName": "Xiaochen", 
        "id": "sg:person.01133560341.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133560341.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "Software School, Xiamen University, 361005, Xiamen Fujian, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhongnan", 
        "id": "sg:person.016505436735.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016505436735.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.pbiomolbio.2009.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001510653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002283105", 
          "https://doi.org/10.1038/nature08506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002283105", 
          "https://doi.org/10.1038/nature08506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr1011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005367611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.02.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008391396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010423625", 
          "https://doi.org/10.1038/nrd1468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010423625", 
          "https://doi.org/10.1038/nrd1468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1758-2946-5-30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010845049", 
          "https://doi.org/10.1186/1758-2946-5-30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1132939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013321903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/jaha.113.000434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016750587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1377/hlthaff.25.2.420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019042543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2015.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019462850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2015.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019462850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijms17122118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020653010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbr021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027529511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asmb.537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027815981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jp272834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029093098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6296(02)00126-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034082462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6296(02)00126-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034082462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv1075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035455769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036216461", 
          "https://doi.org/10.1038/nrd1203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036216461", 
          "https://doi.org/10.1038/nrd1203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040268839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040939097", 
          "https://doi.org/10.1038/nrg3920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2007.01.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041328717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jmi.12421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045050667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048231260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpcardiol.2004.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050508469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tips.2009.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052382681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.06.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052895705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1000138107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053118853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2008.10tt", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2013.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061662795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnb.2014.2352454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061714064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnb.2015.2450233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061714137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1169920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1169920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2011-3455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064293377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1386207319666151110122621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069175228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079744666", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnb.2017.2661756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083507544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2017.2670558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083853472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artmed.2017.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084060040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artmed.2017.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084060043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep46757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084955099", 
          "https://doi.org/10.1038/srep46757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jproteome.7b00019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085347777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2017.2736553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091091179"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Drug repositioning strategies have improved substantially in recent years. At present, two advances are poised to facilitate new strategies. First, the LINCS project can provide rich transcriptome data that reflect the responses of cells upon exposure to various drugs. Second, machine learning algorithms have been applied successfully in biomedical research. In this paper, we developed a systematic method to discover novel indications for existing drugs by approaching drug repositioning as a multi-label classification task and used a Softmax regression model to predict previously unrecognized therapeutic properties of drugs based on LINCS transcriptome data. This approach to complete the said task has not been achieved in previous studies. By performing in silico comparison, we demonstrated that the proposed Softmax method showed markedly superior performance over those of other methods. Once fully trained, the method showed a training accuracy exceeding 80% and a validation accuracy of approximately 70%. We generated a highly credible set of 98 drugs with high potential to be repositioned for novel therapeutic purposes. Our case studies included zonisamide and brinzolamide, which were originally developed to treat indications of the nervous system and sensory organs, respectively. Both drugs were repurposed to the cardiovascular category.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-07705-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Discovery of novel therapeutic properties of drugs from transcriptional responses based on multi-label classification", 
    "pagination": "7136", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0e4419aab4637fd08548b46b8a14308ee2c6172daa976b7c635b8247198ac8a9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28769090"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-07705-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090943001"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-07705-8", 
      "https://app.dimensions.ai/details/publication/pub.1090943001"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47967_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-07705-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07705-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07705-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07705-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07705-8'


 

This table displays all metadata directly associated to this object as RDF triples.

274 TRIPLES      21 PREDICATES      81 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-07705-8 schema:about N27625a01fcc84f1e8c7729a4e91775f3
2 N27f842e7cff945ef868e58088684a5f0
3 N36f5720db02c47d3a6a918e99c856e58
4 N3946e368dcaa48569cfdab8416531684
5 N3ad93628eb7245628af6fe6078ac5ca4
6 N423acfa5051a4cfeb6d6d5c19501ba4b
7 N56ce5d8d15764ea38717de331faadc40
8 N66d978046cd945599178ab14ce0b033f
9 N7c581dedbde747a4b2b727e465aec9a1
10 N8722a95fd46141e8aa1cb201ff3a4bb1
11 anzsrc-for:11
12 anzsrc-for:1115
13 schema:author Nfc0a94c6467f46caa48738099a3f62d5
14 schema:citation sg:pub.10.1023/a:1010933404324
15 sg:pub.10.1038/nature08506
16 sg:pub.10.1038/nrd1203
17 sg:pub.10.1038/nrd1468
18 sg:pub.10.1038/nrg3920
19 sg:pub.10.1038/srep46757
20 sg:pub.10.1186/1758-2946-5-30
21 https://app.dimensions.ai/details/publication/pub.1079744666
22 https://doi.org/10.1002/asmb.537
23 https://doi.org/10.1016/j.artmed.2017.02.005
24 https://doi.org/10.1016/j.artmed.2017.03.001
25 https://doi.org/10.1016/j.cell.2015.05.011
26 https://doi.org/10.1016/j.cpcardiol.2004.04.005
27 https://doi.org/10.1016/j.eswa.2007.01.029
28 https://doi.org/10.1016/j.ins.2016.06.026
29 https://doi.org/10.1016/j.neucom.2016.02.078
30 https://doi.org/10.1016/j.pbiomolbio.2009.01.005
31 https://doi.org/10.1016/j.tips.2009.11.006
32 https://doi.org/10.1016/s0167-6296(02)00126-1
33 https://doi.org/10.1021/acs.jproteome.7b00019
34 https://doi.org/10.1073/pnas.1000138107
35 https://doi.org/10.1089/cmb.2008.10tt
36 https://doi.org/10.1093/bib/bbr021
37 https://doi.org/10.1093/nar/gkr1011
38 https://doi.org/10.1093/nar/gkt1068
39 https://doi.org/10.1093/nar/gkv1075
40 https://doi.org/10.1093/nar/gkv951
41 https://doi.org/10.1109/tcbb.2017.2670558
42 https://doi.org/10.1109/tcsvt.2017.2736553
43 https://doi.org/10.1109/tkde.2013.39
44 https://doi.org/10.1109/tnb.2014.2352454
45 https://doi.org/10.1109/tnb.2015.2450233
46 https://doi.org/10.1109/tnb.2017.2661756
47 https://doi.org/10.1111/jmi.12421
48 https://doi.org/10.1113/jp272834
49 https://doi.org/10.1126/science.1132939
50 https://doi.org/10.1126/science.1169920
51 https://doi.org/10.1161/jaha.113.000434
52 https://doi.org/10.1210/jc.2011-3455
53 https://doi.org/10.1377/hlthaff.25.2.420
54 https://doi.org/10.2174/1386207319666151110122621
55 https://doi.org/10.3390/ijms17122118
56 schema:datePublished 2017-12
57 schema:datePublishedReg 2017-12-01
58 schema:description Drug repositioning strategies have improved substantially in recent years. At present, two advances are poised to facilitate new strategies. First, the LINCS project can provide rich transcriptome data that reflect the responses of cells upon exposure to various drugs. Second, machine learning algorithms have been applied successfully in biomedical research. In this paper, we developed a systematic method to discover novel indications for existing drugs by approaching drug repositioning as a multi-label classification task and used a Softmax regression model to predict previously unrecognized therapeutic properties of drugs based on LINCS transcriptome data. This approach to complete the said task has not been achieved in previous studies. By performing in silico comparison, we demonstrated that the proposed Softmax method showed markedly superior performance over those of other methods. Once fully trained, the method showed a training accuracy exceeding 80% and a validation accuracy of approximately 70%. We generated a highly credible set of 98 drugs with high potential to be repositioned for novel therapeutic purposes. Our case studies included zonisamide and brinzolamide, which were originally developed to treat indications of the nervous system and sensory organs, respectively. Both drugs were repurposed to the cardiovascular category.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree true
62 schema:isPartOf N451a4ac900944324b9d7c37e87a2a65d
63 N54f2303581bd4e3ba7453df24a737aa7
64 sg:journal.1045337
65 schema:name Discovery of novel therapeutic properties of drugs from transcriptional responses based on multi-label classification
66 schema:pagination 7136
67 schema:productId N0d08869854f64657ba1802683822b2e1
68 N17d016c7ac2443249c2691455f6c53e6
69 N4139a9fb70bf4c80832c6d6eb681e30f
70 Nbd5aa5c3e83145729992ed2a045e84f6
71 Nfd5331650d054b1d9aa17d3196fed3f1
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090943001
73 https://doi.org/10.1038/s41598-017-07705-8
74 schema:sdDatePublished 2019-04-11T09:10
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N26281efd3b4043f286c2fe99397683b6
77 schema:url https://www.nature.com/articles/s41598-017-07705-8
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0d08869854f64657ba1802683822b2e1 schema:name pubmed_id
82 schema:value 28769090
83 rdf:type schema:PropertyValue
84 N17d016c7ac2443249c2691455f6c53e6 schema:name dimensions_id
85 schema:value pub.1090943001
86 rdf:type schema:PropertyValue
87 N20db03bf79dd4e39a214d60ae8d1a148 schema:name Beijing Institute of Radiation Medicine, 100850, Beijing, P.R. China
88 rdf:type schema:Organization
89 N26281efd3b4043f286c2fe99397683b6 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N27625a01fcc84f1e8c7729a4e91775f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Machine Learning
93 rdf:type schema:DefinedTerm
94 N27f842e7cff945ef868e58088684a5f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Gene Expression Profiling
96 rdf:type schema:DefinedTerm
97 N36f5720db02c47d3a6a918e99c856e58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Reproducibility of Results
99 rdf:type schema:DefinedTerm
100 N3946e368dcaa48569cfdab8416531684 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Drug Discovery
102 rdf:type schema:DefinedTerm
103 N3ad93628eb7245628af6fe6078ac5ca4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Drug Repositioning
105 rdf:type schema:DefinedTerm
106 N3ae37b1b2b69471bae33e9afb6f04f12 rdf:first sg:person.01214723367.75
107 rdf:rest N6acadbb224ad44988a33d6e21e04df4d
108 N4139a9fb70bf4c80832c6d6eb681e30f schema:name nlm_unique_id
109 schema:value 101563288
110 rdf:type schema:PropertyValue
111 N423acfa5051a4cfeb6d6d5c19501ba4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Transcriptome
113 rdf:type schema:DefinedTerm
114 N451a4ac900944324b9d7c37e87a2a65d schema:issueNumber 1
115 rdf:type schema:PublicationIssue
116 N54f2303581bd4e3ba7453df24a737aa7 schema:volumeNumber 7
117 rdf:type schema:PublicationVolume
118 N56ce5d8d15764ea38717de331faadc40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Algorithms
120 rdf:type schema:DefinedTerm
121 N5ee670d3f54849b98d1e5bd375078a64 schema:name Beijing Institute of Radiation Medicine, 100850, Beijing, P.R. China
122 rdf:type schema:Organization
123 N66d978046cd945599178ab14ce0b033f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Transcription, Genetic
125 rdf:type schema:DefinedTerm
126 N6acadbb224ad44988a33d6e21e04df4d rdf:first sg:person.012514357067.28
127 rdf:rest Naa7c07841cee4364bcdccd5800ff1825
128 N7c581dedbde747a4b2b727e465aec9a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Humans
130 rdf:type schema:DefinedTerm
131 N86b10855c4df488cb0b21749da7d7374 rdf:first sg:person.016505436735.85
132 rdf:rest rdf:nil
133 N8722a95fd46141e8aa1cb201ff3a4bb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Gene Expression Regulation
135 rdf:type schema:DefinedTerm
136 Naa7c07841cee4364bcdccd5800ff1825 rdf:first sg:person.01133560341.53
137 rdf:rest N86b10855c4df488cb0b21749da7d7374
138 Nbd5aa5c3e83145729992ed2a045e84f6 schema:name readcube_id
139 schema:value 0e4419aab4637fd08548b46b8a14308ee2c6172daa976b7c635b8247198ac8a9
140 rdf:type schema:PropertyValue
141 Ndf9d6eb706094234846adaa0feb22e73 schema:name Beijing Institute of Radiation Medicine, 100850, Beijing, P.R. China
142 rdf:type schema:Organization
143 Nfc0a94c6467f46caa48738099a3f62d5 rdf:first sg:person.011121416067.33
144 rdf:rest N3ae37b1b2b69471bae33e9afb6f04f12
145 Nfd5331650d054b1d9aa17d3196fed3f1 schema:name doi
146 schema:value 10.1038/s41598-017-07705-8
147 rdf:type schema:PropertyValue
148 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
149 schema:name Medical and Health Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
152 schema:name Pharmacology and Pharmaceutical Sciences
153 rdf:type schema:DefinedTerm
154 sg:journal.1045337 schema:issn 2045-2322
155 schema:name Scientific Reports
156 rdf:type schema:Periodical
157 sg:person.011121416067.33 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
158 schema:familyName Xie
159 schema:givenName Lingwei
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011121416067.33
161 rdf:type schema:Person
162 sg:person.01133560341.53 schema:affiliation N5ee670d3f54849b98d1e5bd375078a64
163 schema:familyName Bo
164 schema:givenName Xiaochen
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133560341.53
166 rdf:type schema:Person
167 sg:person.01214723367.75 schema:affiliation N20db03bf79dd4e39a214d60ae8d1a148
168 schema:familyName He
169 schema:givenName Song
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214723367.75
171 rdf:type schema:Person
172 sg:person.012514357067.28 schema:affiliation Ndf9d6eb706094234846adaa0feb22e73
173 schema:familyName Wen
174 schema:givenName Yuqi
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012514357067.28
176 rdf:type schema:Person
177 sg:person.016505436735.85 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
178 schema:familyName Zhang
179 schema:givenName Zhongnan
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016505436735.85
181 rdf:type schema:Person
182 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
183 https://doi.org/10.1023/a:1010933404324
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nature08506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002283105
186 https://doi.org/10.1038/nature08506
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nrd1203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036216461
189 https://doi.org/10.1038/nrd1203
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nrd1468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010423625
192 https://doi.org/10.1038/nrd1468
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nrg3920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040939097
195 https://doi.org/10.1038/nrg3920
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/srep46757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084955099
198 https://doi.org/10.1038/srep46757
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/1758-2946-5-30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010845049
201 https://doi.org/10.1186/1758-2946-5-30
202 rdf:type schema:CreativeWork
203 https://app.dimensions.ai/details/publication/pub.1079744666 schema:CreativeWork
204 https://doi.org/10.1002/asmb.537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027815981
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.artmed.2017.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084060040
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.artmed.2017.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084060043
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.cell.2015.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019462850
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.cpcardiol.2004.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050508469
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.eswa.2007.01.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041328717
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.ins.2016.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052895705
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.neucom.2016.02.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008391396
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.pbiomolbio.2009.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001510653
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.tips.2009.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052382681
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/s0167-6296(02)00126-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034082462
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1021/acs.jproteome.7b00019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085347777
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1073/pnas.1000138107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053118853
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1089/cmb.2008.10tt schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245760
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/bib/bbr021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027529511
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/nar/gkr1011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005367611
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/nar/gkt1068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040268839
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/nar/gkv1075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035455769
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/nar/gkv951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048231260
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1109/tcbb.2017.2670558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083853472
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1109/tcsvt.2017.2736553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091091179
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1109/tkde.2013.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662795
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1109/tnb.2014.2352454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061714064
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1109/tnb.2015.2450233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061714137
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1109/tnb.2017.2661756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083507544
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1111/jmi.12421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045050667
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1113/jp272834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029093098
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1126/science.1132939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013321903
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1126/science.1169920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459370
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1161/jaha.113.000434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016750587
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1210/jc.2011-3455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064293377
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1377/hlthaff.25.2.420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019042543
267 rdf:type schema:CreativeWork
268 https://doi.org/10.2174/1386207319666151110122621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069175228
269 rdf:type schema:CreativeWork
270 https://doi.org/10.3390/ijms17122118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020653010
271 rdf:type schema:CreativeWork
272 https://www.grid.ac/institutes/grid.12955.3a schema:alternateName Xiamen University
273 schema:name Software School, Xiamen University, 361005, Xiamen Fujian, P.R. China
274 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...