Hardening of shear band in metallic glass View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-08-01

AUTHORS

J. G. Wang, Y. C. Hu, P. F. Guan, K. K. Song, L. Wang, G. Wang, Y. Pan, B. Sarac, J. Eckert

ABSTRACT

Strain hardening, originating from defects such as the dislocation, avails conventional metals of high engineering reliability in applications. However, the hardenability of metallic glass is a long-standing concern due to the lack of similar defects. In this work, we carefully examine the stress-strain relationship in three bulk monolithic metallic glasses. The results show that hardening is surely available in metallic glasses if the effective load-bearing area is considered instantly. The hardening is proposed to result from the remelting and ensuing solidification of the shear-band material under a hydrostatic pressure imposed by the normal stress during the shear banding event. This applied-pressure quenching densifies the metallic glass by discharging the free volume. On the other hand, as validated by molecular dynamics simulations, the pressure promotes the icosahedral short-range order. The densification and icosahedral clusters both contribute to the increase of the shear strength and therefore the hardening in metallic glasses. More... »

PAGES

7076

References to SciGraph publications

  • 2004-09-19. A structural model for metallic glasses in NATURE MATERIALS
  • 2010-05-16. Transformation-mediated ductility in CuZr-based bulk metallic glasses in NATURE MATERIALS
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2006-01. Atomic packing and short-to-medium-range order in metallic glasses in NATURE
  • 2013-10-08. Localized shear deformation and softening of bulk metallic glass: stress or temperature driven? in SCIENTIFIC REPORTS
  • 2006-01. Must shear bands be hot? in NATURE MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-017-07669-9

    DOI

    http://dx.doi.org/10.1038/s41598-017-07669-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1090933779

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28765652


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Southeast University, 210096, Nanjing, China", 
              "id": "http://www.grid.ac/institutes/grid.263826.b", 
              "name": [
                "School of Materials Science and Engineering, Southeast University, 210096, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "J. G.", 
            "id": "sg:person.015637634077.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015637634077.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.458438.6", 
              "name": [
                "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Y. C.", 
            "id": "sg:person.016575756331.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016575756331.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Materials and Energy Division, Beijing Computational Science Research Center, 100193, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.410743.5", 
              "name": [
                "Materials and Energy Division, Beijing Computational Science Research Center, 100193, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guan", 
            "givenName": "P. F.", 
            "id": "sg:person.01301507473.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301507473.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), 264209, Weihai, China", 
              "id": "http://www.grid.ac/institutes/grid.27255.37", 
              "name": [
                "School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), 264209, Weihai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "K. K.", 
            "id": "sg:person.015065410116.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015065410116.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), 264209, Weihai, China", 
              "id": "http://www.grid.ac/institutes/grid.27255.37", 
              "name": [
                "School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), 264209, Weihai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "L.", 
            "id": "sg:person.013621536061.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013621536061.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory for Microstructures, Institute of Materials, Shanghai University, 200444, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.39436.3b", 
              "name": [
                "Laboratory for Microstructures, Institute of Materials, Shanghai University, 200444, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "G.", 
            "id": "sg:person.013067016615.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013067016615.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Southeast University, 210096, Nanjing, China", 
              "id": "http://www.grid.ac/institutes/grid.263826.b", 
              "name": [
                "School of Materials Science and Engineering, Southeast University, 210096, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pan", 
            "givenName": "Y.", 
            "id": "sg:person.01346225312.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346225312.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstra\u00dfe 12, A-8700, Leoben, Austria", 
              "id": "http://www.grid.ac/institutes/grid.472493.f", 
              "name": [
                "Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstra\u00dfe 12, A-8700, Leoben, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sarac", 
            "givenName": "B.", 
            "id": "sg:person.01101576343.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101576343.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department Materials Physics, Montanuniversit\u00e4t Leoben, Jahnstra\u00dfe 12, A-8700, Leoben, Austria", 
              "id": "http://www.grid.ac/institutes/grid.181790.6", 
              "name": [
                "Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstra\u00dfe 12, A-8700, Leoben, Austria", 
                "Department Materials Physics, Montanuniversit\u00e4t Leoben, Jahnstra\u00dfe 12, A-8700, Leoben, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eckert", 
            "givenName": "J.", 
            "id": "sg:person.01052742631.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052742631.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature04421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019106955", 
              "https://doi.org/10.1038/nature04421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021477303", 
              "https://doi.org/10.1038/nmat1219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep01117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040655141", 
              "https://doi.org/10.1038/srep01117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006395896", 
              "https://doi.org/10.1038/nmat1552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep02798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000341407", 
              "https://doi.org/10.1038/srep02798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2767", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020974045", 
              "https://doi.org/10.1038/nmat2767"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-08-01", 
        "datePublishedReg": "2017-08-01", 
        "description": "Strain hardening, originating from defects such as the dislocation, avails conventional metals of high engineering reliability in applications. However, the hardenability of metallic glass is a long-standing concern due to the lack of similar defects. In this work, we carefully examine the stress-strain relationship in three bulk monolithic metallic glasses. The results show that hardening is surely available in metallic glasses if the effective load-bearing area is considered instantly. The hardening is proposed to result from the remelting and ensuing solidification of the shear-band material under a hydrostatic pressure imposed by the normal stress during the shear banding event. This applied-pressure quenching densifies the metallic glass by discharging the free volume. On the other hand, as validated by molecular dynamics simulations, the pressure promotes the icosahedral short-range order. The densification and icosahedral clusters both contribute to the increase of the shear strength and therefore the hardening in metallic glasses.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-017-07669-9", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6999178", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3800378", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8261589", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "metallic glasses", 
          "effective load-bearing area", 
          "monolithic metallic glasses", 
          "shear band material", 
          "shear banding events", 
          "stress-strain relationship", 
          "load-bearing area", 
          "shear strength", 
          "shear bands", 
          "normal stress", 
          "conventional metals", 
          "engineering reliability", 
          "hardening", 
          "free volume", 
          "glass", 
          "dynamics simulations", 
          "icosahedral short-range order", 
          "hydrostatic pressure", 
          "molecular dynamics simulations", 
          "hardenability", 
          "densification", 
          "solidification", 
          "short-range order", 
          "pressure", 
          "simulations", 
          "strength", 
          "materials", 
          "metals", 
          "dislocations", 
          "defects", 
          "reliability", 
          "applications", 
          "stress", 
          "work", 
          "quenching", 
          "order", 
          "icosahedral clusters", 
          "band", 
          "volume", 
          "results", 
          "increase", 
          "area", 
          "similar defects", 
          "hand", 
          "concern", 
          "relationship", 
          "lack", 
          "clusters", 
          "events"
        ], 
        "name": "Hardening of shear band in metallic glass", 
        "pagination": "7076", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1090933779"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-017-07669-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28765652"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-017-07669-9", 
          "https://app.dimensions.ai/details/publication/pub.1090933779"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_754.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-017-07669-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07669-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07669-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07669-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07669-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    214 TRIPLES      21 PREDICATES      80 URIs      66 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-017-07669-9 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N64c6f2aaf7ef44a99d788c2be1962f9f
    4 schema:citation sg:pub.10.1038/nature04421
    5 sg:pub.10.1038/nmat1219
    6 sg:pub.10.1038/nmat1552
    7 sg:pub.10.1038/nmat2767
    8 sg:pub.10.1038/srep01117
    9 sg:pub.10.1038/srep02798
    10 schema:datePublished 2017-08-01
    11 schema:datePublishedReg 2017-08-01
    12 schema:description Strain hardening, originating from defects such as the dislocation, avails conventional metals of high engineering reliability in applications. However, the hardenability of metallic glass is a long-standing concern due to the lack of similar defects. In this work, we carefully examine the stress-strain relationship in three bulk monolithic metallic glasses. The results show that hardening is surely available in metallic glasses if the effective load-bearing area is considered instantly. The hardening is proposed to result from the remelting and ensuing solidification of the shear-band material under a hydrostatic pressure imposed by the normal stress during the shear banding event. This applied-pressure quenching densifies the metallic glass by discharging the free volume. On the other hand, as validated by molecular dynamics simulations, the pressure promotes the icosahedral short-range order. The densification and icosahedral clusters both contribute to the increase of the shear strength and therefore the hardening in metallic glasses.
    13 schema:genre article
    14 schema:isAccessibleForFree true
    15 schema:isPartOf N0bbc11e295ac4ccbaa7f0b6d2cc4eac5
    16 N7f09f491095748a8b9315fb5eccd1b3f
    17 sg:journal.1045337
    18 schema:keywords applications
    19 area
    20 band
    21 clusters
    22 concern
    23 conventional metals
    24 defects
    25 densification
    26 dislocations
    27 dynamics simulations
    28 effective load-bearing area
    29 engineering reliability
    30 events
    31 free volume
    32 glass
    33 hand
    34 hardenability
    35 hardening
    36 hydrostatic pressure
    37 icosahedral clusters
    38 icosahedral short-range order
    39 increase
    40 lack
    41 load-bearing area
    42 materials
    43 metallic glasses
    44 metals
    45 molecular dynamics simulations
    46 monolithic metallic glasses
    47 normal stress
    48 order
    49 pressure
    50 quenching
    51 relationship
    52 reliability
    53 results
    54 shear band material
    55 shear banding events
    56 shear bands
    57 shear strength
    58 short-range order
    59 similar defects
    60 simulations
    61 solidification
    62 strength
    63 stress
    64 stress-strain relationship
    65 volume
    66 work
    67 schema:name Hardening of shear band in metallic glass
    68 schema:pagination 7076
    69 schema:productId N3b875df16df34ce8b435ee50b987b96c
    70 Ne034d335a1be40bdad38492d5a01fbef
    71 Neba4ab4246a94b97b107cd20a790d617
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090933779
    73 https://doi.org/10.1038/s41598-017-07669-9
    74 schema:sdDatePublished 2022-08-04T17:05
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher Ne355341b2a064c2a8fe6158ac76356f1
    77 schema:url https://doi.org/10.1038/s41598-017-07669-9
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N0bbc11e295ac4ccbaa7f0b6d2cc4eac5 schema:volumeNumber 7
    82 rdf:type schema:PublicationVolume
    83 N1b5b1181b8cd40d897546b65c8d402a1 rdf:first sg:person.013067016615.82
    84 rdf:rest N7c07be0ba28f4b6d975dee574cb85269
    85 N3b875df16df34ce8b435ee50b987b96c schema:name dimensions_id
    86 schema:value pub.1090933779
    87 rdf:type schema:PropertyValue
    88 N449cd7c77c574d44a7b6097c2cea00d8 rdf:first sg:person.01301507473.31
    89 rdf:rest Ncee5884d22eb448eba4063b2f0195ddb
    90 N64c6f2aaf7ef44a99d788c2be1962f9f rdf:first sg:person.015637634077.89
    91 rdf:rest N68ed18d36a7d4630a14fba51f8df34aa
    92 N68ed18d36a7d4630a14fba51f8df34aa rdf:first sg:person.016575756331.73
    93 rdf:rest N449cd7c77c574d44a7b6097c2cea00d8
    94 N7c07be0ba28f4b6d975dee574cb85269 rdf:first sg:person.01346225312.13
    95 rdf:rest N8062a6a7809c4f4280aab6cfbd3166ff
    96 N7f09f491095748a8b9315fb5eccd1b3f schema:issueNumber 1
    97 rdf:type schema:PublicationIssue
    98 N8062a6a7809c4f4280aab6cfbd3166ff rdf:first sg:person.01101576343.16
    99 rdf:rest Naa05338fe13b4f25bb48de2bd182f917
    100 Naa05338fe13b4f25bb48de2bd182f917 rdf:first sg:person.01052742631.45
    101 rdf:rest rdf:nil
    102 Ncd75796101134f3eb47872040f69ad06 rdf:first sg:person.013621536061.31
    103 rdf:rest N1b5b1181b8cd40d897546b65c8d402a1
    104 Ncee5884d22eb448eba4063b2f0195ddb rdf:first sg:person.015065410116.21
    105 rdf:rest Ncd75796101134f3eb47872040f69ad06
    106 Ne034d335a1be40bdad38492d5a01fbef schema:name pubmed_id
    107 schema:value 28765652
    108 rdf:type schema:PropertyValue
    109 Ne355341b2a064c2a8fe6158ac76356f1 schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 Neba4ab4246a94b97b107cd20a790d617 schema:name doi
    112 schema:value 10.1038/s41598-017-07669-9
    113 rdf:type schema:PropertyValue
    114 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Engineering
    116 rdf:type schema:DefinedTerm
    117 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Materials Engineering
    119 rdf:type schema:DefinedTerm
    120 sg:grant.3800378 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-07669-9
    121 rdf:type schema:MonetaryGrant
    122 sg:grant.6999178 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-07669-9
    123 rdf:type schema:MonetaryGrant
    124 sg:grant.8261589 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-07669-9
    125 rdf:type schema:MonetaryGrant
    126 sg:journal.1045337 schema:issn 2045-2322
    127 schema:name Scientific Reports
    128 schema:publisher Springer Nature
    129 rdf:type schema:Periodical
    130 sg:person.01052742631.45 schema:affiliation grid-institutes:grid.181790.6
    131 schema:familyName Eckert
    132 schema:givenName J.
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052742631.45
    134 rdf:type schema:Person
    135 sg:person.01101576343.16 schema:affiliation grid-institutes:grid.472493.f
    136 schema:familyName Sarac
    137 schema:givenName B.
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101576343.16
    139 rdf:type schema:Person
    140 sg:person.01301507473.31 schema:affiliation grid-institutes:grid.410743.5
    141 schema:familyName Guan
    142 schema:givenName P. F.
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301507473.31
    144 rdf:type schema:Person
    145 sg:person.013067016615.82 schema:affiliation grid-institutes:grid.39436.3b
    146 schema:familyName Wang
    147 schema:givenName G.
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013067016615.82
    149 rdf:type schema:Person
    150 sg:person.01346225312.13 schema:affiliation grid-institutes:grid.263826.b
    151 schema:familyName Pan
    152 schema:givenName Y.
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346225312.13
    154 rdf:type schema:Person
    155 sg:person.013621536061.31 schema:affiliation grid-institutes:grid.27255.37
    156 schema:familyName Wang
    157 schema:givenName L.
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013621536061.31
    159 rdf:type schema:Person
    160 sg:person.015065410116.21 schema:affiliation grid-institutes:grid.27255.37
    161 schema:familyName Song
    162 schema:givenName K. K.
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015065410116.21
    164 rdf:type schema:Person
    165 sg:person.015637634077.89 schema:affiliation grid-institutes:grid.263826.b
    166 schema:familyName Wang
    167 schema:givenName J. G.
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015637634077.89
    169 rdf:type schema:Person
    170 sg:person.016575756331.73 schema:affiliation grid-institutes:grid.458438.6
    171 schema:familyName Hu
    172 schema:givenName Y. C.
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016575756331.73
    174 rdf:type schema:Person
    175 sg:pub.10.1038/nature04421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019106955
    176 https://doi.org/10.1038/nature04421
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nmat1219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021477303
    179 https://doi.org/10.1038/nmat1219
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nmat1552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006395896
    182 https://doi.org/10.1038/nmat1552
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nmat2767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020974045
    185 https://doi.org/10.1038/nmat2767
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/srep01117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040655141
    188 https://doi.org/10.1038/srep01117
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/srep02798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000341407
    191 https://doi.org/10.1038/srep02798
    192 rdf:type schema:CreativeWork
    193 grid-institutes:grid.181790.6 schema:alternateName Department Materials Physics, Montanuniversität Leoben, Jahnstraße 12, A-8700, Leoben, Austria
    194 schema:name Department Materials Physics, Montanuniversität Leoben, Jahnstraße 12, A-8700, Leoben, Austria
    195 Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, A-8700, Leoben, Austria
    196 rdf:type schema:Organization
    197 grid-institutes:grid.263826.b schema:alternateName School of Materials Science and Engineering, Southeast University, 210096, Nanjing, China
    198 schema:name School of Materials Science and Engineering, Southeast University, 210096, Nanjing, China
    199 rdf:type schema:Organization
    200 grid-institutes:grid.27255.37 schema:alternateName School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), 264209, Weihai, China
    201 schema:name School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), 264209, Weihai, China
    202 rdf:type schema:Organization
    203 grid-institutes:grid.39436.3b schema:alternateName Laboratory for Microstructures, Institute of Materials, Shanghai University, 200444, Shanghai, China
    204 schema:name Laboratory for Microstructures, Institute of Materials, Shanghai University, 200444, Shanghai, China
    205 rdf:type schema:Organization
    206 grid-institutes:grid.410743.5 schema:alternateName Materials and Energy Division, Beijing Computational Science Research Center, 100193, Beijing, China
    207 schema:name Materials and Energy Division, Beijing Computational Science Research Center, 100193, Beijing, China
    208 rdf:type schema:Organization
    209 grid-institutes:grid.458438.6 schema:alternateName Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
    210 schema:name Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
    211 rdf:type schema:Organization
    212 grid-institutes:grid.472493.f schema:alternateName Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, A-8700, Leoben, Austria
    213 schema:name Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, A-8700, Leoben, Austria
    214 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...