Linearly polarized GHz magnetization dynamics of spin helix modes in the ferrimagnetic insulator Cu2OSeO3 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

I. Stasinopoulos, S. Weichselbaumer, A. Bauer, J. Waizner, H. Berger, M. Garst, C. Pfleiderer, D. Grundler

ABSTRACT

Linear dichroism - the polarization dependent absorption of electromagnetic waves- is routinely exploited in applications as diverse as structure determination of DNA or polarization filters in optical technologies. Here filamentary absorbers with a large length-to-width ratio are a prerequisite. For magnetization dynamics in the few GHz frequency regime strictly linear dichroism was not observed for more than eight decades. Here, we show that the bulk chiral magnet Cu2OSeO3 exhibits linearly polarized magnetization dynamics at an unexpectedly small frequency of about 2 GHz at zero magnetic field. Unlike optical filters that are assembled from filamentary absorbers, the magnet is shown to provide linear polarization as a bulk material for an extremely wide range of length-to-width ratios. In addition, the polarization plane of a given mode can be switched by 90° via a small variation in width. Our findings shed a new light on magnetization dynamics in that ferrimagnetic ordering combined with antisymmetric exchange interaction offers strictly linear polarization and cross-polarized modes for a broad spectrum of sample shapes at zero field. The discovery allows for novel design rules and optimization of microwave-to-magnon transduction in emerging microwave technologies. More... »

PAGES

7037

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-07020-2

DOI

http://dx.doi.org/10.1038/s41598-017-07020-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090950923

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28765550


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E10, Technische Universit\u00e4t M\u00fcnchen, 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stasinopoulos", 
        "givenName": "I.", 
        "id": "sg:person.01230227222.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230227222.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E10, Technische Universit\u00e4t M\u00fcnchen, 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weichselbaumer", 
        "givenName": "S.", 
        "id": "sg:person.013115055175.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013115055175.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E51, Technische Universit\u00e4t M\u00fcnchen, 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauer", 
        "givenName": "A.", 
        "id": "sg:person.01332240064.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332240064.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cologne", 
          "id": "https://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t zu K\u00f6ln, 50937, K\u00f6ln, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waizner", 
        "givenName": "J.", 
        "id": "sg:person.0765715041.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715041.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Institut de Physique de la Mati\u00e8re Complexe, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, 1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berger", 
        "givenName": "H.", 
        "id": "sg:person.0622762432.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622762432.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Dresden", 
          "id": "https://www.grid.ac/institutes/grid.4488.0", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t zu K\u00f6ln, 50937, K\u00f6ln, Germany", 
            "Institut f\u00fcr Theoretische Physik, Technische Universit\u00e4t Dresden, 01062, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garst", 
        "givenName": "M.", 
        "id": "sg:person.0726723464.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726723464.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E51, Technische Universit\u00e4t M\u00fcnchen, 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pfleiderer", 
        "givenName": "C.", 
        "id": "sg:person.0645154744.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645154744.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Institute of Materials (IMX) and Laboratory of Nanoscale Magnetic Materials and Magnonics (LMGN), \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), Station 17, 1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grundler", 
        "givenName": "D.", 
        "id": "sg:person.01151007665.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151007665.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.86.060403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003844066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.060403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003844066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004161774", 
          "https://doi.org/10.1038/ncomms3391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006853479", 
          "https://doi.org/10.1038/nnano.2013.29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.220406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013072170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.220406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013072170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.2.054002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023709545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.2.054002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023709545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024011429", 
          "https://doi.org/10.1038/nmat4223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026381550", 
          "https://doi.org/10.1038/nature05056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026381550", 
          "https://doi.org/10.1038/nature05056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.083603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028630153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.083603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028630153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029936903", 
          "https://doi.org/10.1038/nphys2231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030002822", 
          "https://doi.org/10.1038/nphoton.2010.259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.80.1531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030315888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.80.1531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030315888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.107203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032835809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.107203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032835809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.037603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035517194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.037603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035517194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/24/43/432201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036193404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npjqi.2015.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042297514", 
          "https://doi.org/10.1038/npjqi.2015.14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.017601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042311414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.017601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042311414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.186602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045611615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.186602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045611615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.156401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049240626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.156401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049240626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.237204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050429486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.237204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050429486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051680707", 
          "https://doi.org/10.1038/ncomms6376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.127003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051987026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.127003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051987026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052510644", 
          "https://doi.org/10.1038/nnano.2013.243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.094422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053206100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.094422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053206100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2197087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057845672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3455808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057954485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.367113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057996537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4819157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058081485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.129.1566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060426402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.129.1566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060426402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.165406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060602950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.165406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060602950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.214411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060612031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.214411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060612031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.121306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.121306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.235131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.235131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.197202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.197202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.197203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.197203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jrproc.1957.278436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061314311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmtt.1969.1127105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061701167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1195709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1214143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1234657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062468000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.42.2065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063102862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4995240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090852708"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Linear dichroism - the polarization dependent absorption of electromagnetic waves- is routinely exploited in applications as diverse as structure determination of DNA or polarization filters in optical technologies. Here filamentary absorbers with a large length-to-width ratio are a prerequisite. For magnetization dynamics in the few GHz frequency regime strictly linear dichroism was not observed for more than eight decades. Here, we show that the bulk chiral magnet Cu2OSeO3 exhibits linearly polarized magnetization dynamics at an unexpectedly small frequency of about 2\u2009GHz at zero magnetic field. Unlike optical filters that are assembled from filamentary absorbers, the magnet is shown to provide linear polarization as a bulk material for an extremely wide range of length-to-width ratios. In addition, the polarization plane of a given mode can be switched by 90\u00b0 via a small variation in width. Our findings shed a new light on magnetization dynamics in that ferrimagnetic ordering combined with antisymmetric exchange interaction offers strictly linear polarization and cross-polarized modes for a broad spectrum of sample shapes at zero field. The discovery allows for novel design rules and optimization of microwave-to-magnon transduction in emerging microwave technologies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-07020-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3783141", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Linearly polarized GHz magnetization dynamics of spin helix modes in the ferrimagnetic insulator Cu2OSeO3", 
    "pagination": "7037", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f1138c3f7d3e37a8437b189d876a95f2dbdd875ea5a3fecb863cccd06ad47faf"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28765550"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-07020-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090950923"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-07020-2", 
      "https://app.dimensions.ai/details/publication/pub.1090950923"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-07020-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07020-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07020-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07020-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-07020-2'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      21 PREDICATES      72 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-07020-2 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nc872c6f6b1874c10b8d7172c1793f884
4 schema:citation sg:pub.10.1038/nature05056
5 sg:pub.10.1038/nature09124
6 sg:pub.10.1038/ncomms3391
7 sg:pub.10.1038/ncomms6376
8 sg:pub.10.1038/nmat4223
9 sg:pub.10.1038/nnano.2013.243
10 sg:pub.10.1038/nnano.2013.29
11 sg:pub.10.1038/nphoton.2010.259
12 sg:pub.10.1038/nphys2231
13 sg:pub.10.1038/npjqi.2015.14
14 https://doi.org/10.1063/1.2197087
15 https://doi.org/10.1063/1.3455808
16 https://doi.org/10.1063/1.367113
17 https://doi.org/10.1063/1.4819157
18 https://doi.org/10.1063/1.4995240
19 https://doi.org/10.1088/0953-8984/24/43/432201
20 https://doi.org/10.1103/physrev.129.1566
21 https://doi.org/10.1103/physrevapplied.2.054002
22 https://doi.org/10.1103/physrevb.65.165406
23 https://doi.org/10.1103/physrevb.70.214411
24 https://doi.org/10.1103/physrevb.82.094422
25 https://doi.org/10.1103/physrevb.85.220406
26 https://doi.org/10.1103/physrevb.86.060403
27 https://doi.org/10.1103/physrevb.93.121306
28 https://doi.org/10.1103/physrevb.93.235131
29 https://doi.org/10.1103/physrevlett.102.186602
30 https://doi.org/10.1103/physrevlett.108.017601
31 https://doi.org/10.1103/physrevlett.108.237204
32 https://doi.org/10.1103/physrevlett.109.037603
33 https://doi.org/10.1103/physrevlett.111.127003
34 https://doi.org/10.1103/physrevlett.113.083603
35 https://doi.org/10.1103/physrevlett.113.107203
36 https://doi.org/10.1103/physrevlett.113.156401
37 https://doi.org/10.1103/physrevlett.114.197202
38 https://doi.org/10.1103/physrevlett.114.197203
39 https://doi.org/10.1103/revmodphys.80.1531
40 https://doi.org/10.1109/jrproc.1957.278436
41 https://doi.org/10.1109/tmtt.1969.1127105
42 https://doi.org/10.1126/science.1166767
43 https://doi.org/10.1126/science.1195709
44 https://doi.org/10.1126/science.1214143
45 https://doi.org/10.1126/science.1234657
46 https://doi.org/10.1143/jpsj.42.2065
47 schema:datePublished 2017-12
48 schema:datePublishedReg 2017-12-01
49 schema:description Linear dichroism - the polarization dependent absorption of electromagnetic waves- is routinely exploited in applications as diverse as structure determination of DNA or polarization filters in optical technologies. Here filamentary absorbers with a large length-to-width ratio are a prerequisite. For magnetization dynamics in the few GHz frequency regime strictly linear dichroism was not observed for more than eight decades. Here, we show that the bulk chiral magnet Cu<sub>2</sub>OSeO<sub>3</sub> exhibits linearly polarized magnetization dynamics at an unexpectedly small frequency of about 2 GHz at zero magnetic field. Unlike optical filters that are assembled from filamentary absorbers, the magnet is shown to provide linear polarization as a bulk material for an extremely wide range of length-to-width ratios. In addition, the polarization plane of a given mode can be switched by 90° via a small variation in width. Our findings shed a new light on magnetization dynamics in that ferrimagnetic ordering combined with antisymmetric exchange interaction offers strictly linear polarization and cross-polarized modes for a broad spectrum of sample shapes at zero field. The discovery allows for novel design rules and optimization of microwave-to-magnon transduction in emerging microwave technologies.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree true
53 schema:isPartOf N5f6594c72fa544888028833c61f28fa7
54 N967a6f69d4ff4bac81b3acb22fbc8883
55 sg:journal.1045337
56 schema:name Linearly polarized GHz magnetization dynamics of spin helix modes in the ferrimagnetic insulator Cu2OSeO3
57 schema:pagination 7037
58 schema:productId N26821edadeda45499183d0dec20fd95f
59 N3492e50381f648d28ea86dd3d4f53673
60 N357025cc892d4bb882a65120df974beb
61 N8c8046e357d64ff3885bbb2fccf8e4e8
62 Ne37343a2d1644ff38026622f4b502393
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090950923
64 https://doi.org/10.1038/s41598-017-07020-2
65 schema:sdDatePublished 2019-04-10T15:47
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Ne9d572d43c704a66a1fbdb33bad0bc84
68 schema:url https://www.nature.com/articles/s41598-017-07020-2
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N00da0aa479e94e5dad7803d316345558 rdf:first sg:person.0765715041.35
73 rdf:rest N10217d4d5429432880d0c20221c3edbe
74 N10217d4d5429432880d0c20221c3edbe rdf:first sg:person.0622762432.02
75 rdf:rest N44082235160a49b59a1dedeec4adf1c5
76 N26821edadeda45499183d0dec20fd95f schema:name dimensions_id
77 schema:value pub.1090950923
78 rdf:type schema:PropertyValue
79 N3492e50381f648d28ea86dd3d4f53673 schema:name pubmed_id
80 schema:value 28765550
81 rdf:type schema:PropertyValue
82 N357025cc892d4bb882a65120df974beb schema:name doi
83 schema:value 10.1038/s41598-017-07020-2
84 rdf:type schema:PropertyValue
85 N44082235160a49b59a1dedeec4adf1c5 rdf:first sg:person.0726723464.41
86 rdf:rest N5e5e71c5e26b476bb852739b812979d6
87 N5e5e71c5e26b476bb852739b812979d6 rdf:first sg:person.0645154744.12
88 rdf:rest Nba9b88d458994dcf8b943d5656372387
89 N5f6594c72fa544888028833c61f28fa7 schema:issueNumber 1
90 rdf:type schema:PublicationIssue
91 N8c8046e357d64ff3885bbb2fccf8e4e8 schema:name readcube_id
92 schema:value f1138c3f7d3e37a8437b189d876a95f2dbdd875ea5a3fecb863cccd06ad47faf
93 rdf:type schema:PropertyValue
94 N967a6f69d4ff4bac81b3acb22fbc8883 schema:volumeNumber 7
95 rdf:type schema:PublicationVolume
96 Nae9cb122c2ca4242ab65175419538f1d rdf:first sg:person.01332240064.41
97 rdf:rest N00da0aa479e94e5dad7803d316345558
98 Nb754e2a58f4043f3932541aba56e3a3d rdf:first sg:person.013115055175.56
99 rdf:rest Nae9cb122c2ca4242ab65175419538f1d
100 Nba9b88d458994dcf8b943d5656372387 rdf:first sg:person.01151007665.07
101 rdf:rest rdf:nil
102 Nc872c6f6b1874c10b8d7172c1793f884 rdf:first sg:person.01230227222.56
103 rdf:rest Nb754e2a58f4043f3932541aba56e3a3d
104 Ne37343a2d1644ff38026622f4b502393 schema:name nlm_unique_id
105 schema:value 101563288
106 rdf:type schema:PropertyValue
107 Ne9d572d43c704a66a1fbdb33bad0bc84 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
110 schema:name Physical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
113 schema:name Other Physical Sciences
114 rdf:type schema:DefinedTerm
115 sg:grant.3783141 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-07020-2
116 rdf:type schema:MonetaryGrant
117 sg:journal.1045337 schema:issn 2045-2322
118 schema:name Scientific Reports
119 rdf:type schema:Periodical
120 sg:person.01151007665.07 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
121 schema:familyName Grundler
122 schema:givenName D.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151007665.07
124 rdf:type schema:Person
125 sg:person.01230227222.56 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
126 schema:familyName Stasinopoulos
127 schema:givenName I.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230227222.56
129 rdf:type schema:Person
130 sg:person.013115055175.56 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
131 schema:familyName Weichselbaumer
132 schema:givenName S.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013115055175.56
134 rdf:type schema:Person
135 sg:person.01332240064.41 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
136 schema:familyName Bauer
137 schema:givenName A.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332240064.41
139 rdf:type schema:Person
140 sg:person.0622762432.02 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
141 schema:familyName Berger
142 schema:givenName H.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622762432.02
144 rdf:type schema:Person
145 sg:person.0645154744.12 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
146 schema:familyName Pfleiderer
147 schema:givenName C.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645154744.12
149 rdf:type schema:Person
150 sg:person.0726723464.41 schema:affiliation https://www.grid.ac/institutes/grid.4488.0
151 schema:familyName Garst
152 schema:givenName M.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726723464.41
154 rdf:type schema:Person
155 sg:person.0765715041.35 schema:affiliation https://www.grid.ac/institutes/grid.6190.e
156 schema:familyName Waizner
157 schema:givenName J.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715041.35
159 rdf:type schema:Person
160 sg:pub.10.1038/nature05056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026381550
161 https://doi.org/10.1038/nature05056
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nature09124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080992
164 https://doi.org/10.1038/nature09124
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/ncomms3391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004161774
167 https://doi.org/10.1038/ncomms3391
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/ncomms6376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051680707
170 https://doi.org/10.1038/ncomms6376
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nmat4223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024011429
173 https://doi.org/10.1038/nmat4223
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nnano.2013.243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052510644
176 https://doi.org/10.1038/nnano.2013.243
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nnano.2013.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006853479
179 https://doi.org/10.1038/nnano.2013.29
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nphoton.2010.259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030002822
182 https://doi.org/10.1038/nphoton.2010.259
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nphys2231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029936903
185 https://doi.org/10.1038/nphys2231
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/npjqi.2015.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042297514
188 https://doi.org/10.1038/npjqi.2015.14
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1063/1.2197087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057845672
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1063/1.3455808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057954485
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1063/1.367113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057996537
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1063/1.4819157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058081485
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1063/1.4995240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090852708
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1088/0953-8984/24/43/432201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036193404
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrev.129.1566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060426402
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevapplied.2.054002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023709545
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevb.65.165406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060602950
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevb.70.214411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060612031
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevb.82.094422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053206100
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevb.85.220406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013072170
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevb.86.060403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003844066
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevb.93.121306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060649538
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevb.93.235131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060650717
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.102.186602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045611615
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevlett.108.017601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042311414
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevlett.108.237204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050429486
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevlett.109.037603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035517194
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevlett.111.127003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051987026
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevlett.113.083603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028630153
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrevlett.113.107203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032835809
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/physrevlett.113.156401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049240626
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physrevlett.114.197202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763636
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1103/physrevlett.114.197203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763637
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/revmodphys.80.1531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030315888
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1109/jrproc.1957.278436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061314311
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1109/tmtt.1969.1127105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061701167
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.1166767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459116
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.1195709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462778
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1126/science.1214143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465664
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1126/science.1234657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062468000
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1143/jpsj.42.2065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063102862
255 rdf:type schema:CreativeWork
256 https://www.grid.ac/institutes/grid.4488.0 schema:alternateName TU Dresden
257 schema:name Institut für Theoretische Physik, Technische Universität Dresden, 01062, Dresden, Germany
258 Institut für Theoretische Physik, Universität zu Köln, 50937, Köln, Germany
259 rdf:type schema:Organization
260 https://www.grid.ac/institutes/grid.5333.6 schema:alternateName École Polytechnique Fédérale de Lausanne
261 schema:name Institut de Physique de la Matière Complexe, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
262 Institute of Materials (IMX) and Laboratory of Nanoscale Magnetic Materials and Magnonics (LMGN), École Polytechnique Fédérale de Lausanne (EPFL), Station 17, 1015, Lausanne, Switzerland
263 rdf:type schema:Organization
264 https://www.grid.ac/institutes/grid.6190.e schema:alternateName University of Cologne
265 schema:name Institut für Theoretische Physik, Universität zu Köln, 50937, Köln, Germany
266 rdf:type schema:Organization
267 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
268 schema:name Physik Department E10, Technische Universität München, 85748, Garching, Germany
269 Physik Department E51, Technische Universität München, 85748, Garching, Germany
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...