Approach of automatic 3D geological mapping: the case of the Kovdor phoscorite-carbonatite complex, NW Russia View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

A. O. Kalashnikov, G. Yu Ivanyuk, J. A. Mikhailova, V. A. Sokharev

ABSTRACT

We have developed an approach for automatic 3D geological mapping based on conversion of chemical composition of rocks to mineral composition by logical computation. It allows to calculate mineral composition based on bulk rock chemistry, interpolate the mineral composition in the same way as chemical composition, and, finally, build a 3D geological model. The approach was developed for the Kovdor phoscorite-carbonatite complex containing the Kovdor baddeleyite-apatite-magnetite deposit. We used 4 bulk rock chemistry analyses - Femagn, P2O5, CO2 and SiO2. We used four techniques for prediction of rock types - calculation of normative mineral compositions (norms), multiple regression, artificial neural network and developed by logical evaluation. The two latter became the best. As a result, we distinguished 14 types of phoscorites (forsterite-apatite-magnetite-carbonate rock), carbonatite and host rocks. The results show good convergence with our petrographical studies of the deposit, and recent manually built maps. The proposed approach can be used as a tool of a deposit genesis reconstruction and preliminary geometallurgical modelling. More... »

PAGES

6893

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-06972-9

DOI

http://dx.doi.org/10.1038/s41598-017-06972-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090929679

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28761102


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kola Science Centre", 
          "id": "https://www.grid.ac/institutes/grid.435427.3", 
          "name": [
            "Geological Institute of Kola Science Centre, Russian Academy of Sciences (GI KSC RAS), 14 Fersman Street, 184209, Apatity, Murmansk Region, Russia", 
            "Kola Science Centre of Russian Academy of Sciences (KSC RAS), 14 Fersman Street, 184209, Apatity, Murmansk Region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalashnikov", 
        "givenName": "A. O.", 
        "id": "sg:person.015202504252.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015202504252.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kola Science Centre", 
          "id": "https://www.grid.ac/institutes/grid.435427.3", 
          "name": [
            "Geological Institute of Kola Science Centre, Russian Academy of Sciences (GI KSC RAS), 14 Fersman Street, 184209, Apatity, Murmansk Region, Russia", 
            "Kola Science Centre of Russian Academy of Sciences (KSC RAS), 14 Fersman Street, 184209, Apatity, Murmansk Region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ivanyuk", 
        "givenName": "G. Yu", 
        "id": "sg:person.014250142223.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014250142223.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kola Science Centre", 
          "id": "https://www.grid.ac/institutes/grid.435427.3", 
          "name": [
            "Geological Institute of Kola Science Centre, Russian Academy of Sciences (GI KSC RAS), 14 Fersman Street, 184209, Apatity, Murmansk Region, Russia", 
            "Kola Science Centre of Russian Academy of Sciences (KSC RAS), 14 Fersman Street, 184209, Apatity, Murmansk Region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mikhailova", 
        "givenName": "J. A.", 
        "id": "sg:person.014061574357.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014061574357.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "JSC \u201cKovdorskiy GOK\u201d, 5 Sukhachova Street, 184141, Kovdor, Murmansk Region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sokharev", 
        "givenName": "V. A.", 
        "id": "sg:person.014453237052.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014453237052.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jvolgeores.2010.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002180742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08827500701257860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003581885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2113/gscanmin.43.4.1438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006317520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00126-015-0594-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007283983", 
          "https://doi.org/10.1007/s00126-015-0594-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mineng.2015.04.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013378808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00206816409474036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015169270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gexplo.2016.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015733040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00206818809466011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016093336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-7695-6_55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020148633", 
          "https://doi.org/10.1007/978-1-4419-7695-6_55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-7695-6_55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020148633", 
          "https://doi.org/10.1007/978-1-4419-7695-6_55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00206818809466077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025721200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.oregeorev.2016.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028115942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pepi.2008.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030683639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mineng.2013.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039524510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0012-821x(02)00952-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039621585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2008.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040519014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2113/gscanmin.40.6.1737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043595888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-03647-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045255350", 
          "https://doi.org/10.1007/978-3-642-03647-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-03647-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045255350", 
          "https://doi.org/10.1007/978-3-642-03647-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2009.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049304298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5800/gt-2014-5-4-0162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073134606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00445-002-0244-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086117269", 
          "https://doi.org/10.1007/s00445-002-0244-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00445-002-0244-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086117269", 
          "https://doi.org/10.1007/s00445-002-0244-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "We have developed an approach for automatic 3D geological mapping based on conversion of chemical composition of rocks to mineral composition by logical computation. It allows to calculate mineral composition based on bulk rock chemistry, interpolate the mineral composition in the same way as chemical composition, and, finally, build a 3D geological model. The approach was developed for the Kovdor phoscorite-carbonatite complex containing the Kovdor baddeleyite-apatite-magnetite deposit. We used 4 bulk rock chemistry analyses - Femagn, P2O5, CO2 and SiO2. We used four techniques for prediction of rock types - calculation of normative mineral compositions (norms), multiple regression, artificial neural network and developed by logical evaluation. The two latter became the best. As a result, we distinguished 14 types of phoscorites (forsterite-apatite-magnetite-carbonate rock), carbonatite and host rocks. The results show good convergence with our petrographical studies of the deposit, and recent manually built maps. The proposed approach can be used as a tool of a deposit genesis reconstruction and preliminary geometallurgical modelling.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-06972-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5052921", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Approach of automatic 3D geological mapping: the case of the Kovdor phoscorite-carbonatite complex, NW Russia", 
    "pagination": "6893", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4badff153758f3f594e03a269d7473d61b40545f03687c12318a1a7784d2a3e7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28761102"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-06972-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090929679"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-06972-9", 
      "https://app.dimensions.ai/details/publication/pub.1090929679"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-06972-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-06972-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-06972-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-06972-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-06972-9'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      49 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-06972-9 schema:about anzsrc-for:04
2 anzsrc-for:0403
3 schema:author N31625e9e3680451b858326ae425a5324
4 schema:citation sg:pub.10.1007/978-1-4419-7695-6_55
5 sg:pub.10.1007/978-3-642-03647-7
6 sg:pub.10.1007/s00126-015-0594-z
7 sg:pub.10.1007/s00445-002-0244-z
8 https://doi.org/10.1016/j.cageo.2008.04.005
9 https://doi.org/10.1016/j.cageo.2009.11.003
10 https://doi.org/10.1016/j.gexplo.2016.06.013
11 https://doi.org/10.1016/j.jvolgeores.2010.01.015
12 https://doi.org/10.1016/j.mineng.2013.04.005
13 https://doi.org/10.1016/j.mineng.2015.04.023
14 https://doi.org/10.1016/j.oregeorev.2016.02.008
15 https://doi.org/10.1016/j.pepi.2008.06.013
16 https://doi.org/10.1016/s0012-821x(02)00952-4
17 https://doi.org/10.1080/00206816409474036
18 https://doi.org/10.1080/00206818809466011
19 https://doi.org/10.1080/00206818809466077
20 https://doi.org/10.1080/08827500701257860
21 https://doi.org/10.2113/gscanmin.40.6.1737
22 https://doi.org/10.2113/gscanmin.43.4.1438
23 https://doi.org/10.5800/gt-2014-5-4-0162
24 schema:datePublished 2017-12
25 schema:datePublishedReg 2017-12-01
26 schema:description We have developed an approach for automatic 3D geological mapping based on conversion of chemical composition of rocks to mineral composition by logical computation. It allows to calculate mineral composition based on bulk rock chemistry, interpolate the mineral composition in the same way as chemical composition, and, finally, build a 3D geological model. The approach was developed for the Kovdor phoscorite-carbonatite complex containing the Kovdor baddeleyite-apatite-magnetite deposit. We used 4 bulk rock chemistry analyses - Fe<sub>magn</sub>, P<sub>2</sub>O<sub>5</sub>, CO<sub>2</sub> and SiO<sub>2</sub>. We used four techniques for prediction of rock types - calculation of normative mineral compositions (norms), multiple regression, artificial neural network and developed by logical evaluation. The two latter became the best. As a result, we distinguished 14 types of phoscorites (forsterite-apatite-magnetite-carbonate rock), carbonatite and host rocks. The results show good convergence with our petrographical studies of the deposit, and recent manually built maps. The proposed approach can be used as a tool of a deposit genesis reconstruction and preliminary geometallurgical modelling.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N59410d0ac5314d2b820a6ba3d03756ba
31 Na772765f4fdb4936a30c762a701ff48d
32 sg:journal.1045337
33 schema:name Approach of automatic 3D geological mapping: the case of the Kovdor phoscorite-carbonatite complex, NW Russia
34 schema:pagination 6893
35 schema:productId N2a50b99452c24cdba6f8c422da1a35a8
36 N2eaaf8ac2bf14eb7acf67bbca79787f0
37 N3f60b5b4ea374cd78ea74d0b83d2fbe4
38 N73871da761c6483b898e90d3932b8635
39 N7b567bf02c564c4f89b2a89ac15c77a9
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090929679
41 https://doi.org/10.1038/s41598-017-06972-9
42 schema:sdDatePublished 2019-04-10T15:14
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N12bf546d8fc14245926cd6ca3df35d62
45 schema:url https://www.nature.com/articles/s41598-017-06972-9
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N12bf546d8fc14245926cd6ca3df35d62 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N2a50b99452c24cdba6f8c422da1a35a8 schema:name dimensions_id
52 schema:value pub.1090929679
53 rdf:type schema:PropertyValue
54 N2eaaf8ac2bf14eb7acf67bbca79787f0 schema:name pubmed_id
55 schema:value 28761102
56 rdf:type schema:PropertyValue
57 N31625e9e3680451b858326ae425a5324 rdf:first sg:person.015202504252.24
58 rdf:rest N90340c34641c4e37b3e0b4b4a68e8c7e
59 N3f60b5b4ea374cd78ea74d0b83d2fbe4 schema:name doi
60 schema:value 10.1038/s41598-017-06972-9
61 rdf:type schema:PropertyValue
62 N59410d0ac5314d2b820a6ba3d03756ba schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 N73871da761c6483b898e90d3932b8635 schema:name nlm_unique_id
65 schema:value 101563288
66 rdf:type schema:PropertyValue
67 N7b567bf02c564c4f89b2a89ac15c77a9 schema:name readcube_id
68 schema:value 4badff153758f3f594e03a269d7473d61b40545f03687c12318a1a7784d2a3e7
69 rdf:type schema:PropertyValue
70 N8a7d5c4ede9547aa993116e6f31abd41 schema:name JSC “Kovdorskiy GOK”, 5 Sukhachova Street, 184141, Kovdor, Murmansk Region, Russia
71 rdf:type schema:Organization
72 N90340c34641c4e37b3e0b4b4a68e8c7e rdf:first sg:person.014250142223.70
73 rdf:rest Nfb508b882a484e688b9c12d64a3ec579
74 Na772765f4fdb4936a30c762a701ff48d schema:volumeNumber 7
75 rdf:type schema:PublicationVolume
76 Nd1db7a9187194ce5a28cddb05ca22d96 rdf:first sg:person.014453237052.04
77 rdf:rest rdf:nil
78 Nfb508b882a484e688b9c12d64a3ec579 rdf:first sg:person.014061574357.32
79 rdf:rest Nd1db7a9187194ce5a28cddb05ca22d96
80 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
81 schema:name Earth Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
84 schema:name Geology
85 rdf:type schema:DefinedTerm
86 sg:grant.5052921 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-06972-9
87 rdf:type schema:MonetaryGrant
88 sg:journal.1045337 schema:issn 2045-2322
89 schema:name Scientific Reports
90 rdf:type schema:Periodical
91 sg:person.014061574357.32 schema:affiliation https://www.grid.ac/institutes/grid.435427.3
92 schema:familyName Mikhailova
93 schema:givenName J. A.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014061574357.32
95 rdf:type schema:Person
96 sg:person.014250142223.70 schema:affiliation https://www.grid.ac/institutes/grid.435427.3
97 schema:familyName Ivanyuk
98 schema:givenName G. Yu
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014250142223.70
100 rdf:type schema:Person
101 sg:person.014453237052.04 schema:affiliation N8a7d5c4ede9547aa993116e6f31abd41
102 schema:familyName Sokharev
103 schema:givenName V. A.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014453237052.04
105 rdf:type schema:Person
106 sg:person.015202504252.24 schema:affiliation https://www.grid.ac/institutes/grid.435427.3
107 schema:familyName Kalashnikov
108 schema:givenName A. O.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015202504252.24
110 rdf:type schema:Person
111 sg:pub.10.1007/978-1-4419-7695-6_55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020148633
112 https://doi.org/10.1007/978-1-4419-7695-6_55
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-3-642-03647-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045255350
115 https://doi.org/10.1007/978-3-642-03647-7
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00126-015-0594-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1007283983
118 https://doi.org/10.1007/s00126-015-0594-z
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00445-002-0244-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1086117269
121 https://doi.org/10.1007/s00445-002-0244-z
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.cageo.2008.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040519014
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.cageo.2009.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049304298
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.gexplo.2016.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015733040
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.jvolgeores.2010.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002180742
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.mineng.2013.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039524510
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.mineng.2015.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013378808
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.oregeorev.2016.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028115942
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.pepi.2008.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030683639
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0012-821x(02)00952-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039621585
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1080/00206816409474036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015169270
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1080/00206818809466011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016093336
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1080/00206818809466077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025721200
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1080/08827500701257860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003581885
148 rdf:type schema:CreativeWork
149 https://doi.org/10.2113/gscanmin.40.6.1737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043595888
150 rdf:type schema:CreativeWork
151 https://doi.org/10.2113/gscanmin.43.4.1438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006317520
152 rdf:type schema:CreativeWork
153 https://doi.org/10.5800/gt-2014-5-4-0162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073134606
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.435427.3 schema:alternateName Kola Science Centre
156 schema:name Geological Institute of Kola Science Centre, Russian Academy of Sciences (GI KSC RAS), 14 Fersman Street, 184209, Apatity, Murmansk Region, Russia
157 Kola Science Centre of Russian Academy of Sciences (KSC RAS), 14 Fersman Street, 184209, Apatity, Murmansk Region, Russia
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...