Highly Efficient Photocatalytic Z-Scheme Hydrogen Production over Oxygen-Deficient WO3–x Nanorods supported Zn0.3Cd0.7S Heterostructure View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07-26

AUTHORS

Ammar Bin Yousaf, M. Imran, Syed Javaid Zaidi, Peter Kasak

ABSTRACT

The demand for clean renewable energy is increasing due to depleting fossil fuels and environmental concerns. Photocatalytic hydrogen production through water splitting is one such promising route to meet global energy demands with carbon free technology. Alternative photocatalysts avoiding noble metals are highly demanded. Herein, we fabricated heterostructure consist of oxygen-deficient WO3-x nanorods with Zn0.3Cd0.7S nanoparticles for an efficient Z-Scheme photocatalytic system. Our as obtained heterostructure showed photocatalytic H2 evolution rate of 352.1 μmol h-1 with apparent quantum efficiency (AQY) of 7.3% at λ = 420 nm. The photocatalytic hydrogen production reaches up to 1746.8 μmol after 5 hours process in repeatable manner. The UV-Visible diffuse reflectance spectra show strong absorption in the visible region which greatly favors the photocatalytic performance. Moreover, the efficient charge separation suggested by electrochemical impedance spectroscopy and photocurrent response curves exhibit enhancement in H2 evolution rate. The strong interface contact between WO3-x nanorods and Zn0.3Cd0.7S nanoparticles ascertained from HRTEM images also play an important role for the emigration of electron. Our findings provide possibilities for the design and development of new Z-scheme photocatalysts for highly efficient hydrogen production. More... »

PAGES

6574

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-06808-6

DOI

http://dx.doi.org/10.1038/s41598-017-06808-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090836369

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28747786


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Advanced Materials, Qatar University, Doha, 2713 Qatar", 
          "id": "http://www.grid.ac/institutes/grid.412603.2", 
          "name": [
            "Center for Advanced Materials, Qatar University, Doha, 2713 Qatar"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bin Yousaf", 
        "givenName": "Ammar", 
        "id": "sg:person.012764731663.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012764731663.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 PR China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Imran", 
        "givenName": "M.", 
        "id": "sg:person.014314430000.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014314430000.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Advanced Materials, Qatar University, Doha, 2713 Qatar", 
          "id": "http://www.grid.ac/institutes/grid.412603.2", 
          "name": [
            "Center for Advanced Materials, Qatar University, Doha, 2713 Qatar"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaidi", 
        "givenName": "Syed Javaid", 
        "id": "sg:person.013035102505.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013035102505.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Advanced Materials, Qatar University, Doha, 2713 Qatar", 
          "id": "http://www.grid.ac/institutes/grid.412603.2", 
          "name": [
            "Center for Advanced Materials, Qatar University, Doha, 2713 Qatar"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kasak", 
        "givenName": "Peter", 
        "id": "sg:person.01357716602.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357716602.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/jmr.2013.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048698222", 
          "https://doi.org/10.1557/jmr.2013.42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034505304", 
          "https://doi.org/10.1038/nmat4589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049703263", 
          "https://doi.org/10.1038/srep01021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep40882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048872879", 
          "https://doi.org/10.1038/srep40882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2011.74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013869516", 
          "https://doi.org/10.1557/jmr.2011.74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015322625989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035674998", 
          "https://doi.org/10.1023/a:1015322625989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep40160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026442255", 
          "https://doi.org/10.1038/srep40160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/238037a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011069243", 
          "https://doi.org/10.1038/238037a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07-26", 
    "datePublishedReg": "2017-07-26", 
    "description": "The demand for clean renewable energy is increasing due to depleting fossil fuels and environmental concerns. Photocatalytic hydrogen production through water splitting is one such promising route to meet global energy demands with carbon free technology. Alternative photocatalysts avoiding noble metals are highly demanded. Herein, we fabricated heterostructure consist of oxygen-deficient WO3-x nanorods with Zn0.3Cd0.7S nanoparticles for an efficient Z-Scheme photocatalytic system. Our as obtained heterostructure showed photocatalytic H2 evolution rate of 352.1\u2009\u03bcmol h-1 with apparent quantum efficiency (AQY) of 7.3% at \u03bb\u2009=\u2009420\u2009nm. The photocatalytic hydrogen production reaches up to 1746.8\u2009\u03bcmol after 5\u2009hours process in repeatable manner. The UV-Visible diffuse reflectance spectra show strong absorption in the visible region which greatly favors the photocatalytic performance. Moreover, the efficient charge separation suggested by electrochemical impedance spectroscopy and photocurrent response curves exhibit enhancement in H2 evolution rate. The strong interface contact between WO3-x nanorods and Zn0.3Cd0.7S nanoparticles ascertained from HRTEM images also play an important role for the emigration of electron. Our findings provide possibilities for the design and development of new Z-scheme photocatalysts for highly efficient hydrogen production.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-017-06808-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6384670", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "photocatalytic hydrogen production", 
      "apparent quantum efficiency", 
      "hydrogen production", 
      "UV\u2013visible diffuse reflectance spectra", 
      "electrochemical impedance spectroscopy", 
      "efficient charge separation", 
      "scheme photocatalytic system", 
      "efficient hydrogen production", 
      "diffuse reflectance spectra", 
      "evolution rate", 
      "oxygen-deficient WO3", 
      "photocurrent response curves", 
      "alternative photocatalyst", 
      "water splitting", 
      "impedance spectroscopy", 
      "noble metals", 
      "charge separation", 
      "scheme photocatalyst", 
      "photocatalytic system", 
      "photocatalytic performance", 
      "visible region", 
      "promising route", 
      "nanorods", 
      "strong absorption", 
      "clean renewable energy", 
      "interface contact", 
      "global energy demand", 
      "photocatalyst", 
      "reflectance spectra", 
      "hour process", 
      "HRTEM images", 
      "nanoparticles", 
      "quantum efficiency", 
      "renewable energy", 
      "carbon-free technologies", 
      "WO", 
      "fossil fuels", 
      "energy demand", 
      "Cd", 
      "heterostructures", 
      "Zn", 
      "spectroscopy", 
      "environmental concerns", 
      "free technology", 
      "WO3", 
      "repeatable manner", 
      "Herein", 
      "metals", 
      "separation", 
      "route", 
      "electrons", 
      "spectra", 
      "absorption", 
      "splitting", 
      "fuel", 
      "energy", 
      "technology", 
      "demand", 
      "enhancement", 
      "production", 
      "efficiency", 
      "design", 
      "performance", 
      "response curves", 
      "important role", 
      "contact", 
      "process", 
      "system", 
      "rate", 
      "curves", 
      "consist", 
      "images", 
      "possibility", 
      "region", 
      "development", 
      "manner", 
      "role", 
      "concern", 
      "findings", 
      "emigration", 
      "such promising route", 
      "heterostructure consist", 
      "oxygen-deficient WO", 
      "strong interface contact", 
      "emigration of electron", 
      "Efficient Photocatalytic Z", 
      "Photocatalytic Z", 
      "Scheme Hydrogen Production"
    ], 
    "name": "Highly Efficient Photocatalytic Z-Scheme Hydrogen Production over Oxygen-Deficient WO3\u2013x Nanorods supported Zn0.3Cd0.7S Heterostructure", 
    "pagination": "6574", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090836369"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-06808-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28747786"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-06808-6", 
      "https://app.dimensions.ai/details/publication/pub.1090836369"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_743.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-017-06808-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-06808-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-06808-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-06808-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-06808-6'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      22 PREDICATES      122 URIs      106 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-06808-6 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nc178a57d0c2343aabc8254d0d2e325e1
4 schema:citation sg:pub.10.1023/a:1015322625989
5 sg:pub.10.1038/238037a0
6 sg:pub.10.1038/nmat4589
7 sg:pub.10.1038/srep01021
8 sg:pub.10.1038/srep40160
9 sg:pub.10.1038/srep40882
10 sg:pub.10.1557/jmr.2011.74
11 sg:pub.10.1557/jmr.2013.42
12 schema:datePublished 2017-07-26
13 schema:datePublishedReg 2017-07-26
14 schema:description The demand for clean renewable energy is increasing due to depleting fossil fuels and environmental concerns. Photocatalytic hydrogen production through water splitting is one such promising route to meet global energy demands with carbon free technology. Alternative photocatalysts avoiding noble metals are highly demanded. Herein, we fabricated heterostructure consist of oxygen-deficient WO<sub>3-x</sub> nanorods with Zn<sub>0.3</sub>Cd<sub>0.7</sub>S nanoparticles for an efficient Z-Scheme photocatalytic system. Our as obtained heterostructure showed photocatalytic H<sub>2</sub> evolution rate of 352.1 μmol h<sup>-1</sup> with apparent quantum efficiency (AQY) of 7.3% at λ = 420 nm. The photocatalytic hydrogen production reaches up to 1746.8 μmol after 5 hours process in repeatable manner. The UV-Visible diffuse reflectance spectra show strong absorption in the visible region which greatly favors the photocatalytic performance. Moreover, the efficient charge separation suggested by electrochemical impedance spectroscopy and photocurrent response curves exhibit enhancement in H<sub>2</sub> evolution rate. The strong interface contact between WO<sub>3-x</sub> nanorods and Zn<sub>0.3</sub>Cd<sub>0.7</sub>S nanoparticles ascertained from HRTEM images also play an important role for the emigration of electron. Our findings provide possibilities for the design and development of new Z-scheme photocatalysts for highly efficient hydrogen production.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N5b2c72ae3ea24acb82c12dc9c9bd7b16
19 Nbaa2f463de464223b1b5f04f5f0104c8
20 sg:journal.1045337
21 schema:keywords Cd
22 Efficient Photocatalytic Z
23 HRTEM images
24 Herein
25 Photocatalytic Z
26 Scheme Hydrogen Production
27 UV–visible diffuse reflectance spectra
28 WO
29 WO3
30 Zn
31 absorption
32 alternative photocatalyst
33 apparent quantum efficiency
34 carbon-free technologies
35 charge separation
36 clean renewable energy
37 concern
38 consist
39 contact
40 curves
41 demand
42 design
43 development
44 diffuse reflectance spectra
45 efficiency
46 efficient charge separation
47 efficient hydrogen production
48 electrochemical impedance spectroscopy
49 electrons
50 emigration
51 emigration of electron
52 energy
53 energy demand
54 enhancement
55 environmental concerns
56 evolution rate
57 findings
58 fossil fuels
59 free technology
60 fuel
61 global energy demand
62 heterostructure consist
63 heterostructures
64 hour process
65 hydrogen production
66 images
67 impedance spectroscopy
68 important role
69 interface contact
70 manner
71 metals
72 nanoparticles
73 nanorods
74 noble metals
75 oxygen-deficient WO
76 oxygen-deficient WO3
77 performance
78 photocatalyst
79 photocatalytic hydrogen production
80 photocatalytic performance
81 photocatalytic system
82 photocurrent response curves
83 possibility
84 process
85 production
86 promising route
87 quantum efficiency
88 rate
89 reflectance spectra
90 region
91 renewable energy
92 repeatable manner
93 response curves
94 role
95 route
96 scheme photocatalyst
97 scheme photocatalytic system
98 separation
99 spectra
100 spectroscopy
101 splitting
102 strong absorption
103 strong interface contact
104 such promising route
105 system
106 technology
107 visible region
108 water splitting
109 schema:name Highly Efficient Photocatalytic Z-Scheme Hydrogen Production over Oxygen-Deficient WO3–x Nanorods supported Zn0.3Cd0.7S Heterostructure
110 schema:pagination 6574
111 schema:productId N6cbdea6c21e7433088ba8e1cc702d37d
112 Nbde1dbb677f44270bac6a767acdd8eec
113 Nce46c8b8dad845e58fa712888401ffb1
114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090836369
115 https://doi.org/10.1038/s41598-017-06808-6
116 schema:sdDatePublished 2021-12-01T19:40
117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
118 schema:sdPublisher Na1e22566f18841b1ab86942f14d122f5
119 schema:url https://doi.org/10.1038/s41598-017-06808-6
120 sgo:license sg:explorer/license/
121 sgo:sdDataset articles
122 rdf:type schema:ScholarlyArticle
123 N0c5aee0c4fe84691afb0c2758fdb66a4 rdf:first sg:person.01357716602.10
124 rdf:rest rdf:nil
125 N5b2c72ae3ea24acb82c12dc9c9bd7b16 schema:volumeNumber 7
126 rdf:type schema:PublicationVolume
127 N6cbdea6c21e7433088ba8e1cc702d37d schema:name doi
128 schema:value 10.1038/s41598-017-06808-6
129 rdf:type schema:PropertyValue
130 N7e4c1b257dd1444291391070c6b38497 rdf:first sg:person.013035102505.88
131 rdf:rest N0c5aee0c4fe84691afb0c2758fdb66a4
132 N8cb608ba267a4690a3496f395718b4aa rdf:first sg:person.014314430000.70
133 rdf:rest N7e4c1b257dd1444291391070c6b38497
134 Na1e22566f18841b1ab86942f14d122f5 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 Nbaa2f463de464223b1b5f04f5f0104c8 schema:issueNumber 1
137 rdf:type schema:PublicationIssue
138 Nbde1dbb677f44270bac6a767acdd8eec schema:name dimensions_id
139 schema:value pub.1090836369
140 rdf:type schema:PropertyValue
141 Nc178a57d0c2343aabc8254d0d2e325e1 rdf:first sg:person.012764731663.10
142 rdf:rest N8cb608ba267a4690a3496f395718b4aa
143 Nce46c8b8dad845e58fa712888401ffb1 schema:name pubmed_id
144 schema:value 28747786
145 rdf:type schema:PropertyValue
146 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
147 schema:name Chemical Sciences
148 rdf:type schema:DefinedTerm
149 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
150 schema:name Physical Chemistry (incl. Structural)
151 rdf:type schema:DefinedTerm
152 sg:grant.6384670 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-06808-6
153 rdf:type schema:MonetaryGrant
154 sg:journal.1045337 schema:issn 2045-2322
155 schema:name Scientific Reports
156 schema:publisher Springer Nature
157 rdf:type schema:Periodical
158 sg:person.012764731663.10 schema:affiliation grid-institutes:grid.412603.2
159 schema:familyName Bin Yousaf
160 schema:givenName Ammar
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012764731663.10
162 rdf:type schema:Person
163 sg:person.013035102505.88 schema:affiliation grid-institutes:grid.412603.2
164 schema:familyName Zaidi
165 schema:givenName Syed Javaid
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013035102505.88
167 rdf:type schema:Person
168 sg:person.01357716602.10 schema:affiliation grid-institutes:grid.412603.2
169 schema:familyName Kasak
170 schema:givenName Peter
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357716602.10
172 rdf:type schema:Person
173 sg:person.014314430000.70 schema:affiliation grid-institutes:grid.59053.3a
174 schema:familyName Imran
175 schema:givenName M.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014314430000.70
177 rdf:type schema:Person
178 sg:pub.10.1023/a:1015322625989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035674998
179 https://doi.org/10.1023/a:1015322625989
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/238037a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011069243
182 https://doi.org/10.1038/238037a0
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nmat4589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034505304
185 https://doi.org/10.1038/nmat4589
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/srep01021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049703263
188 https://doi.org/10.1038/srep01021
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/srep40160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026442255
191 https://doi.org/10.1038/srep40160
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/srep40882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048872879
194 https://doi.org/10.1038/srep40882
195 rdf:type schema:CreativeWork
196 sg:pub.10.1557/jmr.2011.74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013869516
197 https://doi.org/10.1557/jmr.2011.74
198 rdf:type schema:CreativeWork
199 sg:pub.10.1557/jmr.2013.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048698222
200 https://doi.org/10.1557/jmr.2013.42
201 rdf:type schema:CreativeWork
202 grid-institutes:grid.412603.2 schema:alternateName Center for Advanced Materials, Qatar University, Doha, 2713 Qatar
203 schema:name Center for Advanced Materials, Qatar University, Doha, 2713 Qatar
204 rdf:type schema:Organization
205 grid-institutes:grid.59053.3a schema:alternateName Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 PR China
206 schema:name Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 PR China
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...