Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

M. Zürch, R. Jung, C. Späth, J. Tümmler, A. Guggenmos, D. Attwood, U. Kleineberg, H. Stiel, C. Spielmann

ABSTRACT

Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |μ 12| ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs. More... »

PAGES

5314

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-05789-w

DOI

http://dx.doi.org/10.1038/s41598-017-05789-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090553766

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28706258


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Helmholtz Institute Jena", 
          "id": "https://www.grid.ac/institutes/grid.450266.3", 
          "name": [
            "Institute of Optics and Quantum Electronics, Abbe Center of Photonics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743, Jena, Germany", 
            "University of California Berkeley, Chemistry Department, 94720, Berkeley, CA, USA", 
            "Helmholtz Institute Jena, Fr\u00f6belstieg 3, 07743, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Z\u00fcrch", 
        "givenName": "M.", 
        "id": "sg:person.0600113177.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113177.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy", 
          "id": "https://www.grid.ac/institutes/grid.419569.6", 
          "name": [
            "Max-Born Institute, Max-Born Str. 2A, D-12489, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jung", 
        "givenName": "R.", 
        "id": "sg:person.0662372170.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662372170.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Quantum Optics", 
          "id": "https://www.grid.ac/institutes/grid.450272.6", 
          "name": [
            "Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, Am Coulombwall 1, D-85748, Garching, Germany", 
            "Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Str. 1, D-85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sp\u00e4th", 
        "givenName": "C.", 
        "id": "sg:person.013651454445.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013651454445.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy", 
          "id": "https://www.grid.ac/institutes/grid.419569.6", 
          "name": [
            "Max-Born Institute, Max-Born Str. 2A, D-12489, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "T\u00fcmmler", 
        "givenName": "J.", 
        "id": "sg:person.01226127174.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226127174.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Quantum Optics", 
          "id": "https://www.grid.ac/institutes/grid.450272.6", 
          "name": [
            "Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, Am Coulombwall 1, D-85748, Garching, Germany", 
            "Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Str. 1, D-85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guggenmos", 
        "givenName": "A.", 
        "id": "sg:person.0664116567.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664116567.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "University of California Berkeley, Department of Electrical Engineering and Computer Sciences, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Attwood", 
        "givenName": "D.", 
        "id": "sg:person.01346244603.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346244603.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Quantum Optics", 
          "id": "https://www.grid.ac/institutes/grid.450272.6", 
          "name": [
            "Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, Am Coulombwall 1, D-85748, Garching, Germany", 
            "Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Str. 1, D-85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kleineberg", 
        "givenName": "U.", 
        "id": "sg:person.01120434667.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120434667.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy", 
          "id": "https://www.grid.ac/institutes/grid.419569.6", 
          "name": [
            "Max-Born Institute, Max-Born Str. 2A, D-12489, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stiel", 
        "givenName": "H.", 
        "id": "sg:person.01273061203.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273061203.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz Institute Jena", 
          "id": "https://www.grid.ac/institutes/grid.450266.3", 
          "name": [
            "Institute of Optics and Quantum Electronics, Abbe Center of Photonics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743, Jena, Germany", 
            "Helmholtz Institute Jena, Fr\u00f6belstieg 3, 07743, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spielmann", 
        "givenName": "C.", 
        "id": "sg:person.011755611324.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755611324.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature09750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004646089", 
          "https://doi.org/10.1038/nature09750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35021099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005779397", 
          "https://doi.org/10.1038/35021099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1158573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006532067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/13/47/305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008973094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009060525", 
          "https://doi.org/10.1038/srep07356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.20.017480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012119297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lapl.200910023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020953747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lapl.200910023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020953747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.23.005452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022146268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0030-4018(01)01378-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025919877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0030-4018(01)01276-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030210691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1104304108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032477339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1325200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032501355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.14.012872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035058216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-444-53705-8.00005-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035891537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036014187", 
          "https://doi.org/10.1038/ncomms1994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2015.225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038156021", 
          "https://doi.org/10.1038/nphoton.2015.225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.140101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042734038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.140101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042734038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.jmi.1.3.031008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2007.280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044888230", 
          "https://doi.org/10.1038/nphoton.2007.280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/163/1/012062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046842951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/163/1/012062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046842951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.24.008360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052529096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052567441", 
          "https://doi.org/10.1038/nature02883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052567441", 
          "https://doi.org/10.1038/nature02883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b01864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055121562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.053807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060501721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.053807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060501721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.053807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060501721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.174104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060606363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.174104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060606363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.104102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060620380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.104102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060620380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.235401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.235401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.037401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060733568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.037401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060733568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.254801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.254801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.098102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.098102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.103901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.103901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.72.545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.72.545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.47.001129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065122852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.54.005303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065132177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.54.005992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065132277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.022470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065198176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.20.019050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065201122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.011441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065203764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.021131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065204898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.021728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065204962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.29.000881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065221742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.30.000165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065222467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.32.000139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065224536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.34.001618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065227252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.37.001688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065231890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.41.003339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065239402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.41.003714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065239510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.41.005170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065239905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2017.33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084129456", 
          "https://doi.org/10.1038/nphoton.2017.33"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |\u03bc 12|\u2009\u2265\u20090.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20\u2009nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180\u2009nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-05789-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3752864", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies", 
    "pagination": "5314", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1b53777dda9e7cbcb8585168ae9f67d0db80bf4ab4dde48d4e6724245310708d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28706258"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-05789-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090553766"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-05789-w", 
      "https://app.dimensions.ai/details/publication/pub.1090553766"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-05789-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-05789-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-05789-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-05789-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-05789-w'


 

This table displays all metadata directly associated to this object as RDF triples.

299 TRIPLES      21 PREDICATES      80 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-05789-w schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N9ed395cd56954d3c8cf83315e40d4771
4 schema:citation sg:pub.10.1038/35021099
5 sg:pub.10.1038/nature02883
6 sg:pub.10.1038/nature09750
7 sg:pub.10.1038/ncomms1994
8 sg:pub.10.1038/nphoton.2007.280
9 sg:pub.10.1038/nphoton.2015.225
10 sg:pub.10.1038/nphoton.2017.33
11 sg:pub.10.1038/srep07356
12 https://doi.org/10.1002/lapl.200910023
13 https://doi.org/10.1016/b978-0-444-53705-8.00005-9
14 https://doi.org/10.1016/s0030-4018(01)01276-7
15 https://doi.org/10.1016/s0030-4018(01)01378-5
16 https://doi.org/10.1021/acs.nanolett.6b01864
17 https://doi.org/10.1063/1.1325200
18 https://doi.org/10.1073/pnas.1104304108
19 https://doi.org/10.1088/0953-8984/13/47/305
20 https://doi.org/10.1088/1742-6596/163/1/012062
21 https://doi.org/10.1103/physreva.72.053807
22 https://doi.org/10.1103/physrevb.67.174104
23 https://doi.org/10.1103/physrevb.68.140101
24 https://doi.org/10.1103/physrevb.75.104102
25 https://doi.org/10.1103/physrevb.86.235401
26 https://doi.org/10.1103/physreve.72.037401
27 https://doi.org/10.1103/physrevlett.101.254801
28 https://doi.org/10.1103/physrevlett.114.098102
29 https://doi.org/10.1103/physrevlett.68.588
30 https://doi.org/10.1103/physrevlett.78.2748
31 https://doi.org/10.1103/physrevlett.94.103901
32 https://doi.org/10.1103/revmodphys.72.545
33 https://doi.org/10.1117/1.jmi.1.3.031008
34 https://doi.org/10.1126/science.1158573
35 https://doi.org/10.1364/ao.47.001129
36 https://doi.org/10.1364/ao.54.005303
37 https://doi.org/10.1364/ao.54.005992
38 https://doi.org/10.1364/oe.14.012872
39 https://doi.org/10.1364/oe.19.022470
40 https://doi.org/10.1364/oe.20.017480
41 https://doi.org/10.1364/oe.20.019050
42 https://doi.org/10.1364/oe.21.011441
43 https://doi.org/10.1364/oe.21.021131
44 https://doi.org/10.1364/oe.21.021728
45 https://doi.org/10.1364/oe.23.005452
46 https://doi.org/10.1364/oe.24.008360
47 https://doi.org/10.1364/ol.29.000881
48 https://doi.org/10.1364/ol.30.000165
49 https://doi.org/10.1364/ol.32.000139
50 https://doi.org/10.1364/ol.34.001618
51 https://doi.org/10.1364/ol.37.001688
52 https://doi.org/10.1364/ol.41.003339
53 https://doi.org/10.1364/ol.41.003714
54 https://doi.org/10.1364/ol.41.005170
55 schema:datePublished 2017-12
56 schema:datePublishedReg 2017-12-01
57 schema:description Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |μ <sub>12</sub>| ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree true
61 schema:isPartOf Nd068205208e94670b01e866a24f4dd38
62 Nddf742842f5f46e299e155b1172106b7
63 sg:journal.1045337
64 schema:name Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies
65 schema:pagination 5314
66 schema:productId N53ace8af5b3a4f3cb2c3c09a97e5d669
67 N84fda70f41bb4750911122c1cfbfdb87
68 Nd88817e325574700bdba0c9363f6d46e
69 Nf0732b31af734b49ba73aca2c944ecdc
70 Nfcf52b8194474c62bf32c864b1fa141c
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090553766
72 https://doi.org/10.1038/s41598-017-05789-w
73 schema:sdDatePublished 2019-04-11T00:12
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Nc3cd1356724344acbc65790b42a28f94
76 schema:url https://www.nature.com/articles/s41598-017-05789-w
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N04a14787dcb44ab9a13c9680ecb94fd1 rdf:first sg:person.01346244603.66
81 rdf:rest N9e6cf2639601420a8ae781c692a4ad77
82 N143145ad26bd4cd389ab507591577268 rdf:first sg:person.013651454445.39
83 rdf:rest N909f70b360d742d79767067189e45673
84 N23a7f68c6e87422cb31033a81488c44d rdf:first sg:person.011755611324.38
85 rdf:rest rdf:nil
86 N3d78c7c546144c46b69d584ce5855b7a rdf:first sg:person.0662372170.42
87 rdf:rest N143145ad26bd4cd389ab507591577268
88 N46b7d0fa6e6743749d7223d351273544 rdf:first sg:person.0664116567.39
89 rdf:rest N04a14787dcb44ab9a13c9680ecb94fd1
90 N53ace8af5b3a4f3cb2c3c09a97e5d669 schema:name nlm_unique_id
91 schema:value 101563288
92 rdf:type schema:PropertyValue
93 N841808207746492ea8fdde64015b0287 rdf:first sg:person.01273061203.95
94 rdf:rest N23a7f68c6e87422cb31033a81488c44d
95 N84fda70f41bb4750911122c1cfbfdb87 schema:name readcube_id
96 schema:value 1b53777dda9e7cbcb8585168ae9f67d0db80bf4ab4dde48d4e6724245310708d
97 rdf:type schema:PropertyValue
98 N909f70b360d742d79767067189e45673 rdf:first sg:person.01226127174.63
99 rdf:rest N46b7d0fa6e6743749d7223d351273544
100 N9e6cf2639601420a8ae781c692a4ad77 rdf:first sg:person.01120434667.86
101 rdf:rest N841808207746492ea8fdde64015b0287
102 N9ed395cd56954d3c8cf83315e40d4771 rdf:first sg:person.0600113177.02
103 rdf:rest N3d78c7c546144c46b69d584ce5855b7a
104 Nc3cd1356724344acbc65790b42a28f94 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Nd068205208e94670b01e866a24f4dd38 schema:issueNumber 1
107 rdf:type schema:PublicationIssue
108 Nd88817e325574700bdba0c9363f6d46e schema:name pubmed_id
109 schema:value 28706258
110 rdf:type schema:PropertyValue
111 Nddf742842f5f46e299e155b1172106b7 schema:volumeNumber 7
112 rdf:type schema:PublicationVolume
113 Nf0732b31af734b49ba73aca2c944ecdc schema:name dimensions_id
114 schema:value pub.1090553766
115 rdf:type schema:PropertyValue
116 Nfcf52b8194474c62bf32c864b1fa141c schema:name doi
117 schema:value 10.1038/s41598-017-05789-w
118 rdf:type schema:PropertyValue
119 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
120 schema:name Physical Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
123 schema:name Other Physical Sciences
124 rdf:type schema:DefinedTerm
125 sg:grant.3752864 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-05789-w
126 rdf:type schema:MonetaryGrant
127 sg:journal.1045337 schema:issn 2045-2322
128 schema:name Scientific Reports
129 rdf:type schema:Periodical
130 sg:person.01120434667.86 schema:affiliation https://www.grid.ac/institutes/grid.450272.6
131 schema:familyName Kleineberg
132 schema:givenName U.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120434667.86
134 rdf:type schema:Person
135 sg:person.011755611324.38 schema:affiliation https://www.grid.ac/institutes/grid.450266.3
136 schema:familyName Spielmann
137 schema:givenName C.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755611324.38
139 rdf:type schema:Person
140 sg:person.01226127174.63 schema:affiliation https://www.grid.ac/institutes/grid.419569.6
141 schema:familyName Tümmler
142 schema:givenName J.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226127174.63
144 rdf:type schema:Person
145 sg:person.01273061203.95 schema:affiliation https://www.grid.ac/institutes/grid.419569.6
146 schema:familyName Stiel
147 schema:givenName H.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273061203.95
149 rdf:type schema:Person
150 sg:person.01346244603.66 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
151 schema:familyName Attwood
152 schema:givenName D.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346244603.66
154 rdf:type schema:Person
155 sg:person.013651454445.39 schema:affiliation https://www.grid.ac/institutes/grid.450272.6
156 schema:familyName Späth
157 schema:givenName C.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013651454445.39
159 rdf:type schema:Person
160 sg:person.0600113177.02 schema:affiliation https://www.grid.ac/institutes/grid.450266.3
161 schema:familyName Zürch
162 schema:givenName M.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113177.02
164 rdf:type schema:Person
165 sg:person.0662372170.42 schema:affiliation https://www.grid.ac/institutes/grid.419569.6
166 schema:familyName Jung
167 schema:givenName R.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662372170.42
169 rdf:type schema:Person
170 sg:person.0664116567.39 schema:affiliation https://www.grid.ac/institutes/grid.450272.6
171 schema:familyName Guggenmos
172 schema:givenName A.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664116567.39
174 rdf:type schema:Person
175 sg:pub.10.1038/35021099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005779397
176 https://doi.org/10.1038/35021099
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nature02883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052567441
179 https://doi.org/10.1038/nature02883
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nature09750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004646089
182 https://doi.org/10.1038/nature09750
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/ncomms1994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036014187
185 https://doi.org/10.1038/ncomms1994
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nphoton.2007.280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044888230
188 https://doi.org/10.1038/nphoton.2007.280
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nphoton.2015.225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038156021
191 https://doi.org/10.1038/nphoton.2015.225
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nphoton.2017.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129456
194 https://doi.org/10.1038/nphoton.2017.33
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/srep07356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009060525
197 https://doi.org/10.1038/srep07356
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/lapl.200910023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020953747
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/b978-0-444-53705-8.00005-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035891537
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/s0030-4018(01)01276-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030210691
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/s0030-4018(01)01378-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025919877
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1021/acs.nanolett.6b01864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121562
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1063/1.1325200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032501355
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1073/pnas.1104304108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032477339
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1088/0953-8984/13/47/305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008973094
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1088/1742-6596/163/1/012062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046842951
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physreva.72.053807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060501721
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevb.67.174104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060606363
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevb.68.140101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042734038
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevb.75.104102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060620380
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevb.86.235401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060640553
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physreve.72.037401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060733568
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrevlett.101.254801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754532
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physrevlett.114.098102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763433
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1103/physrevlett.68.588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804971
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1103/physrevlett.78.2748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060815031
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1103/physrevlett.94.103901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830012
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1103/revmodphys.72.545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839521
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1117/1.jmi.1.3.031008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135014
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1126/science.1158573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006532067
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1364/ao.47.001129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065122852
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1364/ao.54.005303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065132177
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1364/ao.54.005992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065132277
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1364/oe.14.012872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035058216
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1364/oe.19.022470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065198176
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1364/oe.20.017480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012119297
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1364/oe.20.019050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065201122
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1364/oe.21.011441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065203764
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1364/oe.21.021131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065204898
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1364/oe.21.021728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065204962
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1364/oe.23.005452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022146268
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1364/oe.24.008360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052529096
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1364/ol.29.000881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065221742
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1364/ol.30.000165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065222467
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1364/ol.32.000139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224536
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1364/ol.34.001618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065227252
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1364/ol.37.001688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065231890
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1364/ol.41.003339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065239402
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1364/ol.41.003714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065239510
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1364/ol.41.005170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065239905
284 rdf:type schema:CreativeWork
285 https://www.grid.ac/institutes/grid.419569.6 schema:alternateName Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy
286 schema:name Max-Born Institute, Max-Born Str. 2A, D-12489, Berlin, Germany
287 rdf:type schema:Organization
288 https://www.grid.ac/institutes/grid.450266.3 schema:alternateName Helmholtz Institute Jena
289 schema:name Helmholtz Institute Jena, Fröbelstieg 3, 07743, Jena, Germany
290 Institute of Optics and Quantum Electronics, Abbe Center of Photonics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743, Jena, Germany
291 University of California Berkeley, Chemistry Department, 94720, Berkeley, CA, USA
292 rdf:type schema:Organization
293 https://www.grid.ac/institutes/grid.450272.6 schema:alternateName Max Planck Institute of Quantum Optics
294 schema:name Ludwig-Maximilians-Universität München, Am Coulombwall 1, D-85748, Garching, Germany
295 Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748, Garching, Germany
296 rdf:type schema:Organization
297 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
298 schema:name University of California Berkeley, Department of Electrical Engineering and Computer Sciences, 94720, Berkeley, CA, USA
299 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...