High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Kamal Choudhary, Irina Kalish, Ryan Beams, Francesca Tavazza

ABSTRACT

We introduce a simple criterion to identify two-dimensional (2D) materials based on the comparison between experimental lattice constants and lattice constants mainly obtained from Materials-Project (MP) density functional theory (DFT) calculation repository. Specifically, if the relative difference between the two lattice constants for a specific material is greater than or equal to 5%, we predict them to be good candidates for 2D materials. We have predicted at least 1356 such 2D materials. For all the systems satisfying our criterion, we manually create single layer systems and calculate their energetics, structural, electronic, and elastic properties for both the bulk and the single layer cases. Currently the database consists of 1012 bulk and 430 single layer materials, of which 371 systems are common to bulk and single layer. The rest of calculations are underway. To validate our criterion, we calculated the exfoliation energy of the suggested layered materials, and we found that in 88.9% of the cases the currently accepted criterion for exfoliation was satisfied. Also, using molybdenum telluride as a test case, we performed X-ray diffraction and Raman scattering experiments to benchmark our calculations and understand their applicability and limitations. The data is publicly available at the website http://www.ctcms.nist.gov/~knc6/JVASP.html. More... »

PAGES

5179

References to SciGraph publications

  • 2016-04. Boosting materials modelling in NATURE MATERIALS
  • 2015-12. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors in NATURE COMMUNICATIONS
  • 2014-12. Two-dimensional flexible nanoelectronics in NATURE COMMUNICATIONS
  • 2016-02-03. 2D materials: Hybrid interfaces in NATURE NANOTECHNOLOGY
  • 2015-01. Metal–organic framework nanosheets in polymer composite materials for gas separation in NATURE MATERIALS
  • 2005-11. Two-dimensional gas of massless Dirac fermions in graphene in NATURE
  • 2016-04. Why all the fuss about 2D semiconductors? in NATURE PHOTONICS
  • 2012. Handbook of Computational Chemistry in NONE
  • 2016-05. Machine learning bandgaps of double perovskites in SCIENTIFIC REPORTS
  • 2016-04. Flat talk in NATURE PHOTONICS
  • 2016-04. Raman fingerprint for semi-metal WTe2 evolving from bulk to monolayer in SCIENTIFIC REPORTS
  • 2015-12. Dispersive growth and laser-induced rippling of large-area singlelayer MoS2 nanosheets by CVD on c-plane sapphire substrate in SCIENTIFIC REPORTS
  • 2014-10. Electronics based on two-dimensional materials in NATURE NANOTECHNOLOGY
  • 2016-02. Two-dimensional superconductivity: The Ising on the monolayer in NATURE PHYSICS
  • 2016-06-21. Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity in NATURE COMMUNICATIONS
  • 2016-05-04. Can artificial intelligence create the next wonder material? in NATURE
  • 2012-01. Valley-selective circular dichroism of monolayer molybdenum disulphide in NATURE COMMUNICATIONS
  • 2015-09-29. A database to enable discovery and design of piezoelectric materials in SCIENTIFIC DATA
  • 2015-12. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies in NPJ COMPUTATIONAL MATERIALS
  • 2012-08. Valley polarization in MoS2 monolayers by optical pumping in NATURE NANOTECHNOLOGY
  • 2015-06. Voltage-controlled quantum light from an atomically thin semiconductor in NATURE NANOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-017-05402-0

    DOI

    http://dx.doi.org/10.1038/s41598-017-05402-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1090546624

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28701780


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institute of Standards and Technology", 
              "id": "https://www.grid.ac/institutes/grid.94225.38", 
              "name": [
                "Materials Science and Engineering Division, National Institute of Standards and Technology, 20899, Gaithersburg, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Choudhary", 
            "givenName": "Kamal", 
            "id": "sg:person.0655644420.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655644420.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Standards and Technology", 
              "id": "https://www.grid.ac/institutes/grid.94225.38", 
              "name": [
                "Materials Science and Engineering Division, National Institute of Standards and Technology, 20899, Gaithersburg, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kalish", 
            "givenName": "Irina", 
            "id": "sg:person.012512327133.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012512327133.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Standards and Technology", 
              "id": "https://www.grid.ac/institutes/grid.94225.38", 
              "name": [
                "Materials Science and Engineering Division, National Institute of Standards and Technology, 20899, Gaithersburg, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beams", 
            "givenName": "Ryan", 
            "id": "sg:person.0616127523.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616127523.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Standards and Technology", 
              "id": "https://www.grid.ac/institutes/grid.94225.38", 
              "name": [
                "Materials Science and Engineering Division, National Institute of Standards and Technology, 20899, Gaithersburg, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tavazza", 
            "givenName": "Francesca", 
            "id": "sg:person.01030761762.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030761762.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/aenm.201600671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000354605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2012.10.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001839014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep19375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007873778", 
              "https://doi.org/10.1038/srep19375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0927-0256(96)00008-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008708156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c6nr04508a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008831636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.235502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009306567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.235502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009306567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2014.10.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009541139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2014.10.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009541139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2014.10.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009541139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2014.10.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009541139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aad3000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009597040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3nr00192j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013059997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-3697(76)90143-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013724190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-3697(76)90143-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013724190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jz3012436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013954860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0034-4885/79/6/066501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014688732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsnano.5b02511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015655339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.64.235305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017364456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.64.235305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017364456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/24/42/424218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017458788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/08893110410001664882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018140490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/533022a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022122032", 
              "https://doi.org/10.1038/533022a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022224835", 
              "https://doi.org/10.1038/nnano.2014.207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4619", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022335900", 
              "https://doi.org/10.1038/nmat4619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cr300263a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022830330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.245501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023244161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.245501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023244161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2016.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024675476", 
              "https://doi.org/10.1038/nphoton.2016.47"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025394574", 
              "https://doi.org/10.1038/ncomms9632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/npjcompumats.2015.10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025730500", 
              "https://doi.org/10.1038/npjcompumats.2015.10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep11756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026742949", 
              "https://doi.org/10.1038/srep11756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-007-0711-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027942015", 
              "https://doi.org/10.1007/978-94-007-0711-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-007-0711-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027942015", 
              "https://doi.org/10.1007/978-94-007-0711-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.95", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027952436", 
              "https://doi.org/10.1038/nnano.2012.95"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2015.07.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028927709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2015.07.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028927709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2015.07.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028927709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2015.07.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028927709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0108768102006948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029241003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030324587", 
              "https://doi.org/10.1038/nphys3647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.79", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030502764", 
              "https://doi.org/10.1038/nnano.2015.79"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp212558p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034158521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.109.116403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034708654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.109.116403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034708654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijch.201300024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034837992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2016.53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036078359", 
              "https://doi.org/10.1038/nphoton.2016.53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn400280c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038090434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1524/zkri.2006.221.1.15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038431251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physb.2011.03.044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038932232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn503454h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039229679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040349398", 
              "https://doi.org/10.1038/ncomms6678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.83.195131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040559330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.83.195131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040559330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5cs00811e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041846832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sdata.2015.53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042391110", 
              "https://doi.org/10.1038/sdata.2015.53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep19624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043255470", 
              "https://doi.org/10.1038/srep19624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.3.031002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044508242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.3.031002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044508242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4817409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046225763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.76.125112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047348130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.76.125112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047348130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.6b01342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048967913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049548334", 
              "https://doi.org/10.1038/ncomms1882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms12011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049566147", 
              "https://doi.org/10.1038/ncomms12011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4891230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051820138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scriptamat.2015.07.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052222149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jpcc.5b02950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053625614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053714742", 
              "https://doi.org/10.1038/nmat4113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jpclett.5b02174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055114095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsnano.6b05127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055138184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsnano.6b05127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055138184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsnano.6b05127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055138184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/j100393a010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055668762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn503789v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056226240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2016.13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056463411", 
              "https://doi.org/10.1038/nnano.2016.13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3527067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057968230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.62.10812", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060596743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.62.10812", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060596743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.085104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060627498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.085104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060627498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.92.214103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060647984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.92.214103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060647984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.105.196401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060757628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.105.196401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060757628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/5992.998641", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061195500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.118.106101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084199138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.118.106101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084199138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470447710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470447710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661867"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "We introduce a simple criterion to identify two-dimensional (2D) materials based on the comparison between experimental lattice constants and lattice constants mainly obtained from Materials-Project (MP) density functional theory (DFT) calculation repository. Specifically, if the relative difference between the two lattice constants for a specific material is greater than or equal to 5%, we predict them to be good candidates for 2D materials. We have predicted at least 1356 such 2D materials. For all the systems satisfying our criterion, we manually create single layer systems and calculate their energetics, structural, electronic, and elastic properties for both the bulk and the single layer cases. Currently the database consists of 1012 bulk and 430 single layer materials, of which 371 systems are common to bulk and single layer. The rest of calculations are underway. To validate our criterion, we calculated the exfoliation energy of the suggested layered materials, and we found that in 88.9% of the cases the currently accepted criterion for exfoliation was satisfied. Also, using molybdenum telluride as a test case, we performed X-ray diffraction and Raman scattering experiments to benchmark our calculations and understand their applicability and limitations. The data is publicly available at the website http://www.ctcms.nist.gov/~knc6/JVASP.html.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-017-05402-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory", 
        "pagination": "5179", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b152e42215ed8201960f229db9b476fe87f7c39478bc0f32440ee49abc5e5e44"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28701780"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-017-05402-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1090546624"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-017-05402-0", 
          "https://app.dimensions.ai/details/publication/pub.1090546624"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:15", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000552.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-017-05402-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-05402-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-05402-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-05402-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-05402-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    314 TRIPLES      21 PREDICATES      97 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-017-05402-0 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N1752ab64dceb42f6ac6742cccb008dbd
    4 schema:citation sg:pub.10.1007/978-94-007-0711-5
    5 sg:pub.10.1038/533022a
    6 sg:pub.10.1038/nature04233
    7 sg:pub.10.1038/ncomms12011
    8 sg:pub.10.1038/ncomms1882
    9 sg:pub.10.1038/ncomms6678
    10 sg:pub.10.1038/ncomms9632
    11 sg:pub.10.1038/nmat4113
    12 sg:pub.10.1038/nmat4619
    13 sg:pub.10.1038/nnano.2012.95
    14 sg:pub.10.1038/nnano.2014.207
    15 sg:pub.10.1038/nnano.2015.79
    16 sg:pub.10.1038/nnano.2016.13
    17 sg:pub.10.1038/nphoton.2016.47
    18 sg:pub.10.1038/nphoton.2016.53
    19 sg:pub.10.1038/nphys3647
    20 sg:pub.10.1038/npjcompumats.2015.10
    21 sg:pub.10.1038/sdata.2015.53
    22 sg:pub.10.1038/srep11756
    23 sg:pub.10.1038/srep19375
    24 sg:pub.10.1038/srep19624
    25 https://doi.org/10.1002/9780470447710
    26 https://doi.org/10.1002/aenm.201600671
    27 https://doi.org/10.1002/ijch.201300024
    28 https://doi.org/10.1016/0022-3697(76)90143-8
    29 https://doi.org/10.1016/0927-0256(96)00008-0
    30 https://doi.org/10.1016/j.commatsci.2012.10.028
    31 https://doi.org/10.1016/j.commatsci.2014.10.037
    32 https://doi.org/10.1016/j.commatsci.2015.07.019
    33 https://doi.org/10.1016/j.physb.2011.03.044
    34 https://doi.org/10.1016/j.scriptamat.2015.07.021
    35 https://doi.org/10.1021/acs.jpcc.5b02950
    36 https://doi.org/10.1021/acs.jpclett.5b02174
    37 https://doi.org/10.1021/acs.nanolett.6b01342
    38 https://doi.org/10.1021/acsnano.5b02511
    39 https://doi.org/10.1021/acsnano.6b05127
    40 https://doi.org/10.1021/cr300263a
    41 https://doi.org/10.1021/j100393a010
    42 https://doi.org/10.1021/jp212558p
    43 https://doi.org/10.1021/jz3012436
    44 https://doi.org/10.1021/nn400280c
    45 https://doi.org/10.1021/nn503454h
    46 https://doi.org/10.1021/nn503789v
    47 https://doi.org/10.1039/c3nr00192j
    48 https://doi.org/10.1039/c5cs00811e
    49 https://doi.org/10.1039/c6nr04508a
    50 https://doi.org/10.1063/1.3527067
    51 https://doi.org/10.1063/1.4817409
    52 https://doi.org/10.1063/1.4891230
    53 https://doi.org/10.1080/08893110410001664882
    54 https://doi.org/10.1088/0034-4885/79/6/066501
    55 https://doi.org/10.1088/0953-8984/24/42/424218
    56 https://doi.org/10.1103/physrevb.62.10812
    57 https://doi.org/10.1103/physrevb.64.235305
    58 https://doi.org/10.1103/physrevb.76.125112
    59 https://doi.org/10.1103/physrevb.79.085104
    60 https://doi.org/10.1103/physrevb.83.195131
    61 https://doi.org/10.1103/physrevb.92.214103
    62 https://doi.org/10.1103/physrevlett.105.196401
    63 https://doi.org/10.1103/physrevlett.108.235502
    64 https://doi.org/10.1103/physrevlett.108.245501
    65 https://doi.org/10.1103/physrevlett.109.116403
    66 https://doi.org/10.1103/physrevlett.118.106101
    67 https://doi.org/10.1103/physrevx.3.031002
    68 https://doi.org/10.1107/s0108768102006948
    69 https://doi.org/10.1109/5992.998641
    70 https://doi.org/10.1126/science.aad3000
    71 https://doi.org/10.1524/zkri.2006.221.1.15
    72 schema:datePublished 2017-12
    73 schema:datePublishedReg 2017-12-01
    74 schema:description We introduce a simple criterion to identify two-dimensional (2D) materials based on the comparison between experimental lattice constants and lattice constants mainly obtained from Materials-Project (MP) density functional theory (DFT) calculation repository. Specifically, if the relative difference between the two lattice constants for a specific material is greater than or equal to 5%, we predict them to be good candidates for 2D materials. We have predicted at least 1356 such 2D materials. For all the systems satisfying our criterion, we manually create single layer systems and calculate their energetics, structural, electronic, and elastic properties for both the bulk and the single layer cases. Currently the database consists of 1012 bulk and 430 single layer materials, of which 371 systems are common to bulk and single layer. The rest of calculations are underway. To validate our criterion, we calculated the exfoliation energy of the suggested layered materials, and we found that in 88.9% of the cases the currently accepted criterion for exfoliation was satisfied. Also, using molybdenum telluride as a test case, we performed X-ray diffraction and Raman scattering experiments to benchmark our calculations and understand their applicability and limitations. The data is publicly available at the website http://www.ctcms.nist.gov/~knc6/JVASP.html.
    75 schema:genre research_article
    76 schema:inLanguage en
    77 schema:isAccessibleForFree true
    78 schema:isPartOf N67f08c7e79764b3c9c42ddd240da7b9d
    79 Na3c42a47bc304a3ba6f88a1b68cf33bf
    80 sg:journal.1045337
    81 schema:name High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory
    82 schema:pagination 5179
    83 schema:productId N3ba03b3c5b774c9ea838d055a8117913
    84 N570ff45644db4472a6f69eec8376c579
    85 N58dc3321877b42a68b41f7f4ef428c4f
    86 N76ece798056a4896af2eb0a3253c8367
    87 Nef1eb7054dff447086cd9459f60b82f0
    88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090546624
    89 https://doi.org/10.1038/s41598-017-05402-0
    90 schema:sdDatePublished 2019-04-11T01:15
    91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    92 schema:sdPublisher N5da9bd839b924f649265dcd378bf2ae5
    93 schema:url https://www.nature.com/articles/s41598-017-05402-0
    94 sgo:license sg:explorer/license/
    95 sgo:sdDataset articles
    96 rdf:type schema:ScholarlyArticle
    97 N1752ab64dceb42f6ac6742cccb008dbd rdf:first sg:person.0655644420.79
    98 rdf:rest N66a9ade0974246e8a04c5f243939919b
    99 N3ba03b3c5b774c9ea838d055a8117913 schema:name readcube_id
    100 schema:value b152e42215ed8201960f229db9b476fe87f7c39478bc0f32440ee49abc5e5e44
    101 rdf:type schema:PropertyValue
    102 N570ff45644db4472a6f69eec8376c579 schema:name nlm_unique_id
    103 schema:value 101563288
    104 rdf:type schema:PropertyValue
    105 N58dc3321877b42a68b41f7f4ef428c4f schema:name dimensions_id
    106 schema:value pub.1090546624
    107 rdf:type schema:PropertyValue
    108 N5da9bd839b924f649265dcd378bf2ae5 schema:name Springer Nature - SN SciGraph project
    109 rdf:type schema:Organization
    110 N5dcaa195bc6040ecb38f9e9f66c9a9b3 rdf:first sg:person.01030761762.29
    111 rdf:rest rdf:nil
    112 N66a9ade0974246e8a04c5f243939919b rdf:first sg:person.012512327133.93
    113 rdf:rest Ne67ce73f34884034bf15fccaf01cfc09
    114 N67f08c7e79764b3c9c42ddd240da7b9d schema:volumeNumber 7
    115 rdf:type schema:PublicationVolume
    116 N76ece798056a4896af2eb0a3253c8367 schema:name doi
    117 schema:value 10.1038/s41598-017-05402-0
    118 rdf:type schema:PropertyValue
    119 Na3c42a47bc304a3ba6f88a1b68cf33bf schema:issueNumber 1
    120 rdf:type schema:PublicationIssue
    121 Ne67ce73f34884034bf15fccaf01cfc09 rdf:first sg:person.0616127523.47
    122 rdf:rest N5dcaa195bc6040ecb38f9e9f66c9a9b3
    123 Nef1eb7054dff447086cd9459f60b82f0 schema:name pubmed_id
    124 schema:value 28701780
    125 rdf:type schema:PropertyValue
    126 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Chemical Sciences
    128 rdf:type schema:DefinedTerm
    129 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Physical Chemistry (incl. Structural)
    131 rdf:type schema:DefinedTerm
    132 sg:journal.1045337 schema:issn 2045-2322
    133 schema:name Scientific Reports
    134 rdf:type schema:Periodical
    135 sg:person.01030761762.29 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
    136 schema:familyName Tavazza
    137 schema:givenName Francesca
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030761762.29
    139 rdf:type schema:Person
    140 sg:person.012512327133.93 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
    141 schema:familyName Kalish
    142 schema:givenName Irina
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012512327133.93
    144 rdf:type schema:Person
    145 sg:person.0616127523.47 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
    146 schema:familyName Beams
    147 schema:givenName Ryan
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616127523.47
    149 rdf:type schema:Person
    150 sg:person.0655644420.79 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
    151 schema:familyName Choudhary
    152 schema:givenName Kamal
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655644420.79
    154 rdf:type schema:Person
    155 sg:pub.10.1007/978-94-007-0711-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027942015
    156 https://doi.org/10.1007/978-94-007-0711-5
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/533022a schema:sameAs https://app.dimensions.ai/details/publication/pub.1022122032
    159 https://doi.org/10.1038/533022a
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
    162 https://doi.org/10.1038/nature04233
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/ncomms12011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049566147
    165 https://doi.org/10.1038/ncomms12011
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/ncomms1882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049548334
    168 https://doi.org/10.1038/ncomms1882
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/ncomms6678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040349398
    171 https://doi.org/10.1038/ncomms6678
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/ncomms9632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025394574
    174 https://doi.org/10.1038/ncomms9632
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/nmat4113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053714742
    177 https://doi.org/10.1038/nmat4113
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/nmat4619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022335900
    180 https://doi.org/10.1038/nmat4619
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/nnano.2012.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027952436
    183 https://doi.org/10.1038/nnano.2012.95
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nnano.2014.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022224835
    186 https://doi.org/10.1038/nnano.2014.207
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/nnano.2015.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030502764
    189 https://doi.org/10.1038/nnano.2015.79
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nnano.2016.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056463411
    192 https://doi.org/10.1038/nnano.2016.13
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nphoton.2016.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024675476
    195 https://doi.org/10.1038/nphoton.2016.47
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nphoton.2016.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036078359
    198 https://doi.org/10.1038/nphoton.2016.53
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nphys3647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030324587
    201 https://doi.org/10.1038/nphys3647
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/npjcompumats.2015.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025730500
    204 https://doi.org/10.1038/npjcompumats.2015.10
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/sdata.2015.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042391110
    207 https://doi.org/10.1038/sdata.2015.53
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/srep11756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026742949
    210 https://doi.org/10.1038/srep11756
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/srep19375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007873778
    213 https://doi.org/10.1038/srep19375
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/srep19624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043255470
    216 https://doi.org/10.1038/srep19624
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1002/9780470447710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661867
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1002/aenm.201600671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000354605
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1002/ijch.201300024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034837992
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/0022-3697(76)90143-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013724190
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/0927-0256(96)00008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008708156
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.commatsci.2012.10.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001839014
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.commatsci.2014.10.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009541139
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.commatsci.2015.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028927709
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/j.physb.2011.03.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038932232
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1016/j.scriptamat.2015.07.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052222149
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1021/acs.jpcc.5b02950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053625614
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1021/acs.jpclett.5b02174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055114095
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1021/acs.nanolett.6b01342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048967913
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1021/acsnano.5b02511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015655339
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1021/acsnano.6b05127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055138184
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1021/cr300263a schema:sameAs https://app.dimensions.ai/details/publication/pub.1022830330
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1021/j100393a010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055668762
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1021/jp212558p schema:sameAs https://app.dimensions.ai/details/publication/pub.1034158521
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1021/jz3012436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013954860
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1021/nn400280c schema:sameAs https://app.dimensions.ai/details/publication/pub.1038090434
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1021/nn503454h schema:sameAs https://app.dimensions.ai/details/publication/pub.1039229679
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1021/nn503789v schema:sameAs https://app.dimensions.ai/details/publication/pub.1056226240
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1039/c3nr00192j schema:sameAs https://app.dimensions.ai/details/publication/pub.1013059997
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1039/c5cs00811e schema:sameAs https://app.dimensions.ai/details/publication/pub.1041846832
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1039/c6nr04508a schema:sameAs https://app.dimensions.ai/details/publication/pub.1008831636
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1063/1.3527067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057968230
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1063/1.4817409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046225763
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1063/1.4891230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051820138
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1080/08893110410001664882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018140490
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1088/0034-4885/79/6/066501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014688732
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1088/0953-8984/24/42/424218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017458788
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1103/physrevb.62.10812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060596743
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1103/physrevb.64.235305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017364456
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1103/physrevb.76.125112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047348130
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1103/physrevb.79.085104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627498
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1103/physrevb.83.195131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040559330
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1103/physrevb.92.214103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060647984
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1103/physrevlett.105.196401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757628
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1103/physrevlett.108.235502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009306567
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1103/physrevlett.108.245501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023244161
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1103/physrevlett.109.116403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034708654
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1103/physrevlett.118.106101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084199138
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1103/physrevx.3.031002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044508242
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1107/s0108768102006948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029241003
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1109/5992.998641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061195500
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1126/science.aad3000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009597040
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1524/zkri.2006.221.1.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038431251
    311 rdf:type schema:CreativeWork
    312 https://www.grid.ac/institutes/grid.94225.38 schema:alternateName National Institute of Standards and Technology
    313 schema:name Materials Science and Engineering Division, National Institute of Standards and Technology, 20899, Gaithersburg, MD, USA
    314 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...