Appearance of Unstable Monopoly State Caused by Selective and Concentrative Mergers in Business Networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Hayato Goto, Eduardo Viegas, Henrik Jeldtoft Jensen, Hideki Takayasu, Misako Takayasu

ABSTRACT

Recently, growth mechanism of firms in complex business networks became new targets of scientific study owing to increasing availability of high quality business firms' data. Here, we paid attention to comprehensive data of M&A events for 40 years and derived empirical laws by applying methods and concepts of aggregation dynamics of aerosol physics. It is found that the probability of merger between bigger firms is bigger than that between smaller ones, and such tendency is enhancing year by year. We introduced a numerical model simulating the whole ecosystem of firms and showed that the system is already in an unstable monopoly state in which growth of middle sized firms are suppressed. More... »

PAGES

5064

References to SciGraph publications

  • 2016-02-17. Universal resilience patterns in complex networks in NATURE
  • 2012-07. Controlling edge dynamics in complex networks in NATURE PHYSICS
  • 2013-12. Realistic control of network dynamics in NATURE COMMUNICATIONS
  • 2014-04. Generalised Central Limit Theorems for Growth Rate Distribution of Complex Systems in JOURNAL OF STATISTICAL PHYSICS
  • 2013-10. Universality in network dynamics in NATURE PHYSICS
  • 1996-02. Scaling behaviour in the growth of companies in NATURE
  • 2014-01. Spontaneous recovery in dynamical networks in NATURE PHYSICS
  • 2015. Empirical Analysis of Firm-Dynamics on Japanese Interfirm Trade Network in PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOCIAL MODELING AND SIMULATION, PLUS ECONOPHYSICS COLLOQUIUM 2014
  • 2010-04-15. Catastrophic cascade of failures in interdependent networks in NATURE
  • 1998-06. Collective dynamics of ‘small-world’ networks in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-017-05362-5

    DOI

    http://dx.doi.org/10.1038/s41598-017-05362-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1090535881

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28698605


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1503", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Business and Management", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Commerce, Management, Tourism and Services", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tokyo Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.32197.3e", 
              "name": [
                "Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259, Nagatsuta-cho, 226-8502, Yokohama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goto", 
            "givenName": "Hayato", 
            "id": "sg:person.011530770423.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011530770423.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Imperial College London", 
              "id": "https://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Centre for Complexity Science and Department of Mathematics, Imperial College London, SW7 2AZ, London, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Viegas", 
            "givenName": "Eduardo", 
            "id": "sg:person.013103757625.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013103757625.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tokyo Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.32197.3e", 
              "name": [
                "Centre for Complexity Science and Department of Mathematics, Imperial College London, SW7 2AZ, London, United Kingdom", 
                "Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, 226-8502, Yokohama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jensen", 
            "givenName": "Henrik Jeldtoft", 
            "id": "sg:person.0751302561.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751302561.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sony Computer Science Laboratories", 
              "id": "https://www.grid.ac/institutes/grid.452725.3", 
              "name": [
                "Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, 226-8502, Yokohama, Japan", 
                "Sony Computer Science Laboratories, 3-14-13, Higashi-Gotanda, Shinagawa-ku, 141-0022, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takayasu", 
            "givenName": "Hideki", 
            "id": "sg:person.011452542725.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011452542725.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tokyo Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.32197.3e", 
              "name": [
                "Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259, Nagatsuta-cho, 226-8502, Yokohama, Japan", 
                "Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, 226-8502, Yokohama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takayasu", 
            "givenName": "Misako", 
            "id": "sg:person.013527045464.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527045464.18"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1371/journal.pone.0025995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001111251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.168701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001388237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.168701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001388237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.5234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001892823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.5234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001892823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-014-0956-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002747374", 
              "https://doi.org/10.1007/s10955-014-0956-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/379804a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003037270", 
              "https://doi.org/10.1038/379804a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.4626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009810049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.4626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009810049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.286.5439.509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010080128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08932", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010370510", 
              "https://doi.org/10.1038/nature08932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08932", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010370510", 
              "https://doi.org/10.1038/nature08932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.74.036121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015184876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.74.036121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015184876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2012.10.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015953092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2741", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022099795", 
              "https://doi.org/10.1038/nphys2741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-20591-5_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022599326", 
              "https://doi.org/10.1007/978-3-319-20591-5_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0509543102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022955301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.63.066123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027367808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.63.066123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027367808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2327", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027641380", 
              "https://doi.org/10.1038/nphys2327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041701867", 
              "https://doi.org/10.1038/ncomms2939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.2014.0370", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041837738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/30918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041985305", 
              "https://doi.org/10.1038/30918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/30918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041985305", 
              "https://doi.org/10.1038/30918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044429526", 
              "https://doi.org/10.1038/nphys2819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.4629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044794346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.4629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044794346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsif.2015.0120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046569430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.4633", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050658620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.4633", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050658620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051997515", 
              "https://doi.org/10.1038/nature16948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051997515", 
              "https://doi.org/10.1038/nature16948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/jp1:1997180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056974559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1062081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062445167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218348x98000080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062975764"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "Recently, growth mechanism of firms in complex business networks became new targets of scientific study owing to increasing availability of high quality business firms' data. Here, we paid attention to comprehensive data of M&A events for 40 years and derived empirical laws by applying methods and concepts of aggregation dynamics of aerosol physics. It is found that the probability of merger between bigger firms is bigger than that between smaller ones, and such tendency is enhancing year by year. We introduced a numerical model simulating the whole ecosystem of firms and showed that the system is already in an unstable monopoly state in which growth of middle sized firms are suppressed.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-017-05362-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6138456", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Appearance of Unstable Monopoly State Caused by Selective and Concentrative Mergers in Business Networks", 
        "pagination": "5064", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5cac2327ea8abff9fa4355ac661fde0275cee9970eff64a5ab4ea18cdf06ab22"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28698605"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-017-05362-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1090535881"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-017-05362-5", 
          "https://app.dimensions.ai/details/publication/pub.1090535881"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000493.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-017-05362-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-05362-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-05362-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-05362-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-05362-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    195 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-017-05362-5 schema:about anzsrc-for:15
    2 anzsrc-for:1503
    3 schema:author N5dc6186023b140f598359d58194e551d
    4 schema:citation sg:pub.10.1007/978-3-319-20591-5_18
    5 sg:pub.10.1007/s10955-014-0956-4
    6 sg:pub.10.1038/30918
    7 sg:pub.10.1038/379804a0
    8 sg:pub.10.1038/nature08932
    9 sg:pub.10.1038/nature16948
    10 sg:pub.10.1038/ncomms2939
    11 sg:pub.10.1038/nphys2327
    12 sg:pub.10.1038/nphys2741
    13 sg:pub.10.1038/nphys2819
    14 https://doi.org/10.1016/j.physa.2012.10.020
    15 https://doi.org/10.1051/jp1:1997180
    16 https://doi.org/10.1073/pnas.0509543102
    17 https://doi.org/10.1098/rsif.2015.0120
    18 https://doi.org/10.1098/rspa.2014.0370
    19 https://doi.org/10.1103/physreve.63.066123
    20 https://doi.org/10.1103/physreve.74.036121
    21 https://doi.org/10.1103/physrevlett.108.168701
    22 https://doi.org/10.1103/physrevlett.85.4626
    23 https://doi.org/10.1103/physrevlett.85.4629
    24 https://doi.org/10.1103/physrevlett.85.4633
    25 https://doi.org/10.1103/physrevlett.85.5234
    26 https://doi.org/10.1126/science.1062081
    27 https://doi.org/10.1126/science.286.5439.509
    28 https://doi.org/10.1142/s0218348x98000080
    29 https://doi.org/10.1371/journal.pone.0025995
    30 schema:datePublished 2017-12
    31 schema:datePublishedReg 2017-12-01
    32 schema:description Recently, growth mechanism of firms in complex business networks became new targets of scientific study owing to increasing availability of high quality business firms' data. Here, we paid attention to comprehensive data of M&A events for 40 years and derived empirical laws by applying methods and concepts of aggregation dynamics of aerosol physics. It is found that the probability of merger between bigger firms is bigger than that between smaller ones, and such tendency is enhancing year by year. We introduced a numerical model simulating the whole ecosystem of firms and showed that the system is already in an unstable monopoly state in which growth of middle sized firms are suppressed.
    33 schema:genre research_article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree true
    36 schema:isPartOf N83929928265640598f865e286804c3c2
    37 Ne476f9aac1b94a39abd95ad380c570c7
    38 sg:journal.1045337
    39 schema:name Appearance of Unstable Monopoly State Caused by Selective and Concentrative Mergers in Business Networks
    40 schema:pagination 5064
    41 schema:productId N1efb10e5e5b84ce1b14ce3b49bacf439
    42 N57b1e532aafb41b2bcf0f19bcad7ac6d
    43 N7b307c93c2d0432896b9760dfa7a55f7
    44 N8130fd949eb741f9a9cd5c30e7045851
    45 Nc265a127647f454dbf002f1fc33b070a
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090535881
    47 https://doi.org/10.1038/s41598-017-05362-5
    48 schema:sdDatePublished 2019-04-10T19:53
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher Ne29828dd3f5d4734a49fd0818f4e47c5
    51 schema:url https://www.nature.com/articles/s41598-017-05362-5
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N1efb10e5e5b84ce1b14ce3b49bacf439 schema:name pubmed_id
    56 schema:value 28698605
    57 rdf:type schema:PropertyValue
    58 N2f3c2bf1a41b4d8aaa17fdb1ecc3beb3 rdf:first sg:person.013103757625.00
    59 rdf:rest Nf556cb2686b541e1bcc3cd3ca73e99b5
    60 N57b1e532aafb41b2bcf0f19bcad7ac6d schema:name readcube_id
    61 schema:value 5cac2327ea8abff9fa4355ac661fde0275cee9970eff64a5ab4ea18cdf06ab22
    62 rdf:type schema:PropertyValue
    63 N5dc6186023b140f598359d58194e551d rdf:first sg:person.011530770423.76
    64 rdf:rest N2f3c2bf1a41b4d8aaa17fdb1ecc3beb3
    65 N5fedcd2a6ccd486b916f43ccac758eae rdf:first sg:person.013527045464.18
    66 rdf:rest rdf:nil
    67 N7b307c93c2d0432896b9760dfa7a55f7 schema:name dimensions_id
    68 schema:value pub.1090535881
    69 rdf:type schema:PropertyValue
    70 N8130fd949eb741f9a9cd5c30e7045851 schema:name nlm_unique_id
    71 schema:value 101563288
    72 rdf:type schema:PropertyValue
    73 N83929928265640598f865e286804c3c2 schema:issueNumber 1
    74 rdf:type schema:PublicationIssue
    75 Nc265a127647f454dbf002f1fc33b070a schema:name doi
    76 schema:value 10.1038/s41598-017-05362-5
    77 rdf:type schema:PropertyValue
    78 Nc3e3d6a2c031423ab5d24a630e55532d rdf:first sg:person.011452542725.42
    79 rdf:rest N5fedcd2a6ccd486b916f43ccac758eae
    80 Ne29828dd3f5d4734a49fd0818f4e47c5 schema:name Springer Nature - SN SciGraph project
    81 rdf:type schema:Organization
    82 Ne476f9aac1b94a39abd95ad380c570c7 schema:volumeNumber 7
    83 rdf:type schema:PublicationVolume
    84 Nf556cb2686b541e1bcc3cd3ca73e99b5 rdf:first sg:person.0751302561.38
    85 rdf:rest Nc3e3d6a2c031423ab5d24a630e55532d
    86 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Commerce, Management, Tourism and Services
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:1503 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Business and Management
    91 rdf:type schema:DefinedTerm
    92 sg:grant.6138456 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-05362-5
    93 rdf:type schema:MonetaryGrant
    94 sg:journal.1045337 schema:issn 2045-2322
    95 schema:name Scientific Reports
    96 rdf:type schema:Periodical
    97 sg:person.011452542725.42 schema:affiliation https://www.grid.ac/institutes/grid.452725.3
    98 schema:familyName Takayasu
    99 schema:givenName Hideki
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011452542725.42
    101 rdf:type schema:Person
    102 sg:person.011530770423.76 schema:affiliation https://www.grid.ac/institutes/grid.32197.3e
    103 schema:familyName Goto
    104 schema:givenName Hayato
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011530770423.76
    106 rdf:type schema:Person
    107 sg:person.013103757625.00 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
    108 schema:familyName Viegas
    109 schema:givenName Eduardo
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013103757625.00
    111 rdf:type schema:Person
    112 sg:person.013527045464.18 schema:affiliation https://www.grid.ac/institutes/grid.32197.3e
    113 schema:familyName Takayasu
    114 schema:givenName Misako
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527045464.18
    116 rdf:type schema:Person
    117 sg:person.0751302561.38 schema:affiliation https://www.grid.ac/institutes/grid.32197.3e
    118 schema:familyName Jensen
    119 schema:givenName Henrik Jeldtoft
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751302561.38
    121 rdf:type schema:Person
    122 sg:pub.10.1007/978-3-319-20591-5_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022599326
    123 https://doi.org/10.1007/978-3-319-20591-5_18
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s10955-014-0956-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002747374
    126 https://doi.org/10.1007/s10955-014-0956-4
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
    129 https://doi.org/10.1038/30918
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1038/379804a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003037270
    132 https://doi.org/10.1038/379804a0
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1038/nature08932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010370510
    135 https://doi.org/10.1038/nature08932
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1038/nature16948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051997515
    138 https://doi.org/10.1038/nature16948
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1038/ncomms2939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041701867
    141 https://doi.org/10.1038/ncomms2939
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1038/nphys2327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027641380
    144 https://doi.org/10.1038/nphys2327
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1038/nphys2741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022099795
    147 https://doi.org/10.1038/nphys2741
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1038/nphys2819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044429526
    150 https://doi.org/10.1038/nphys2819
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.physa.2012.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015953092
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1051/jp1:1997180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056974559
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1073/pnas.0509543102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022955301
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1098/rsif.2015.0120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046569430
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1098/rspa.2014.0370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041837738
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1103/physreve.63.066123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027367808
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1103/physreve.74.036121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015184876
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1103/physrevlett.108.168701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001388237
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1103/physrevlett.85.4626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009810049
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1103/physrevlett.85.4629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044794346
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1103/physrevlett.85.4633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050658620
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1103/physrevlett.85.5234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001892823
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1126/science.1062081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445167
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1142/s0218348x98000080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062975764
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1371/journal.pone.0025995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001111251
    183 rdf:type schema:CreativeWork
    184 https://www.grid.ac/institutes/grid.32197.3e schema:alternateName Tokyo Institute of Technology
    185 schema:name Centre for Complexity Science and Department of Mathematics, Imperial College London, SW7 2AZ, London, United Kingdom
    186 Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259, Nagatsuta-cho, 226-8502, Yokohama, Japan
    187 Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, 226-8502, Yokohama, Japan
    188 rdf:type schema:Organization
    189 https://www.grid.ac/institutes/grid.452725.3 schema:alternateName Sony Computer Science Laboratories
    190 schema:name Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, 226-8502, Yokohama, Japan
    191 Sony Computer Science Laboratories, 3-14-13, Higashi-Gotanda, Shinagawa-ku, 141-0022, Tokyo, Japan
    192 rdf:type schema:Organization
    193 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
    194 schema:name Centre for Complexity Science and Department of Mathematics, Imperial College London, SW7 2AZ, London, United Kingdom
    195 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...