Climate Classification is an Important Factor in Assessing Quality-of-Care Across Hospitals View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07-10

AUTHORS

Mary Regina Boland, Pradipta Parhi, Pierre Gentine, Nicholas P. Tatonetti

ABSTRACT

Climate is a known modulator of disease, but its impact on hospital performance metrics remains unstudied. We assess the relationship between Köppen-Geiger climate classification and hospital performance metrics, specifically 30-day mortality, as reported in Hospital Compare, and collected for the period July 2013 through June 2014 (7/1/2013-06/30/2014). A hospital-level multivariate linear regression analysis was performed while controlling for known socioeconomic factors to explore the relationship between all-cause mortality and climate. Hospital performance scores were obtained from 4,524 hospitals belonging to 15 distinct Köppen-Geiger climates and 2,373 unique counties. Model results revealed that hospital performance metrics for mortality showed significant climate dependence (p < 0.001) after adjusting for socioeconomic factors. Climate is a significant factor in evaluating hospital 30-day mortality rates. These results demonstrate that climate classification is an important factor when comparing hospital performance across the United States. More... »

PAGES

4948

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-04708-3

DOI

http://dx.doi.org/10.1038/s41598-017-04708-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090523170

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28694475


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Climate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Factor Analysis, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Geography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hospital Mortality", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hospitals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality of Health Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Socioeconomic Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Observational Health Data Sciences and Informatics, Columbia University, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Biomedical Informatics, Columbia University, New York, NY USA", 
            "Department of Systems Biology, Columbia University, New York, NY USA", 
            "Department of Medicine, Columbia University, New York, NY USA", 
            "Observational Health Data Sciences and Informatics, Columbia University, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boland", 
        "givenName": "Mary Regina", 
        "id": "sg:person.0770233234.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770233234.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Earth and Environmental Engineering, Columbia University, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Earth and Environmental Engineering, Columbia University, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parhi", 
        "givenName": "Pradipta", 
        "id": "sg:person.011754074443.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754074443.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Earth and Environmental Engineering, Columbia University, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Earth and Environmental Engineering, Columbia University, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gentine", 
        "givenName": "Pierre", 
        "id": "sg:person.0720240666.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720240666.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Observational Health Data Sciences and Informatics, Columbia University, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Biomedical Informatics, Columbia University, New York, NY USA", 
            "Department of Systems Biology, Columbia University, New York, NY USA", 
            "Department of Medicine, Columbia University, New York, NY USA", 
            "Observational Health Data Sciences and Informatics, Columbia University, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tatonetti", 
        "givenName": "Nicholas P.", 
        "id": "sg:person.0651210417.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651210417.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2466-11-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051381648", 
          "https://doi.org/10.1186/1471-2466-11-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2466-11-49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001775458", 
          "https://doi.org/10.1186/1471-2466-11-49"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07-10", 
    "datePublishedReg": "2017-07-10", 
    "description": "Climate is a known modulator of disease, but its impact on hospital performance metrics remains unstudied. We assess the relationship between K\u00f6ppen-Geiger climate classification and hospital performance metrics, specifically 30-day mortality, as reported in Hospital Compare, and collected for the period July 2013 through June 2014 (7/1/2013-06/30/2014). A hospital-level multivariate linear regression analysis was performed while controlling for known socioeconomic factors to explore the relationship between all-cause mortality and climate. Hospital performance scores were obtained from 4,524 hospitals belonging to 15 distinct K\u00f6ppen-Geiger climates and 2,373 unique counties. Model results revealed that hospital performance metrics for mortality showed significant climate dependence (p\u2009<\u20090.001) after adjusting for socioeconomic factors. Climate is a significant factor in evaluating hospital 30-day mortality rates. These results demonstrate that climate classification is an important factor when comparing hospital performance across the United States.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-017-04708-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2686621", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2686664", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3801821", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "hospital performance metrics", 
      "multivariate linear regression analysis", 
      "socioeconomic factors", 
      "cause mortality", 
      "mortality rate", 
      "linear regression analysis", 
      "modulator of disease", 
      "Hospital Compare", 
      "hospital", 
      "mortality", 
      "regression analysis", 
      "performance scores", 
      "hospital performance", 
      "hospital performance scores", 
      "Assessing Quality", 
      "important factor", 
      "significant factor", 
      "factors", 
      "disease", 
      "care", 
      "United States", 
      "scores", 
      "modulator", 
      "classification", 
      "relationship", 
      "rate", 
      "County", 
      "results", 
      "quality", 
      "impact", 
      "analysis", 
      "compare", 
      "state", 
      "metrics", 
      "K\u00f6ppen-Geiger climates", 
      "performance", 
      "dependence", 
      "performance metrics", 
      "climate", 
      "model results", 
      "K\u00f6ppen-Geiger climate classification", 
      "climate dependence", 
      "climate classification", 
      "hospital-level multivariate linear regression analysis", 
      "distinct K\u00f6ppen-Geiger climates", 
      "unique counties", 
      "significant climate dependence"
    ], 
    "name": "Climate Classification is an Important Factor in Assessing Quality-of-Care Across Hospitals", 
    "pagination": "4948", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090523170"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-04708-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28694475"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-04708-3", 
      "https://app.dimensions.ai/details/publication/pub.1090523170"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_745.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-017-04708-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-04708-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-04708-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-04708-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-04708-3'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      22 PREDICATES      85 URIs      75 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-04708-3 schema:about N1dc848889db244189ce8f2876f2986d7
2 N24289a6465444e44af013e63bb9a2e95
3 N335d8b3288b248d29e5081077386a573
4 N4f762755e0964a2eac63abc06296023b
5 N608a8d2aad874fe5b743793aab06f997
6 N794f127c1cbe4399a81cf02abd01c4bf
7 Na059a0823c334269b6edbf96077809fa
8 Nb13407e984b74aeda6b646c478db9966
9 Nd9e854a609a943109877415bf2a4178f
10 Nf12b58fb349a4b91835d71d657a9ca53
11 anzsrc-for:11
12 anzsrc-for:1117
13 schema:author N3e6bdfc0f9a14de39c04befcd7bb61b0
14 schema:citation sg:pub.10.1186/1471-2466-11-1
15 sg:pub.10.1186/1471-2466-11-49
16 schema:datePublished 2017-07-10
17 schema:datePublishedReg 2017-07-10
18 schema:description Climate is a known modulator of disease, but its impact on hospital performance metrics remains unstudied. We assess the relationship between Köppen-Geiger climate classification and hospital performance metrics, specifically 30-day mortality, as reported in Hospital Compare, and collected for the period July 2013 through June 2014 (7/1/2013-06/30/2014). A hospital-level multivariate linear regression analysis was performed while controlling for known socioeconomic factors to explore the relationship between all-cause mortality and climate. Hospital performance scores were obtained from 4,524 hospitals belonging to 15 distinct Köppen-Geiger climates and 2,373 unique counties. Model results revealed that hospital performance metrics for mortality showed significant climate dependence (p < 0.001) after adjusting for socioeconomic factors. Climate is a significant factor in evaluating hospital 30-day mortality rates. These results demonstrate that climate classification is an important factor when comparing hospital performance across the United States.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf Na154a5d40a754aacb7396bf9fe57015b
23 Ne2cdcad228dc4c3ba4a2113945fdd85f
24 sg:journal.1045337
25 schema:keywords Assessing Quality
26 County
27 Hospital Compare
28 Köppen-Geiger climate classification
29 Köppen-Geiger climates
30 United States
31 analysis
32 care
33 cause mortality
34 classification
35 climate
36 climate classification
37 climate dependence
38 compare
39 dependence
40 disease
41 distinct Köppen-Geiger climates
42 factors
43 hospital
44 hospital performance
45 hospital performance metrics
46 hospital performance scores
47 hospital-level multivariate linear regression analysis
48 impact
49 important factor
50 linear regression analysis
51 metrics
52 model results
53 modulator
54 modulator of disease
55 mortality
56 mortality rate
57 multivariate linear regression analysis
58 performance
59 performance metrics
60 performance scores
61 quality
62 rate
63 regression analysis
64 relationship
65 results
66 scores
67 significant climate dependence
68 significant factor
69 socioeconomic factors
70 state
71 unique counties
72 schema:name Climate Classification is an Important Factor in Assessing Quality-of-Care Across Hospitals
73 schema:pagination 4948
74 schema:productId N2c27cd87f48d42ed8303368f5369b722
75 N3917ae7ded894cc1844d128aa9803f6e
76 N9038b0035040471bb0b9d4797fbf773a
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090523170
78 https://doi.org/10.1038/s41598-017-04708-3
79 schema:sdDatePublished 2021-11-01T18:30
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Nf02d35e3360d45f39a09330855ddf2aa
82 schema:url https://doi.org/10.1038/s41598-017-04708-3
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N1dc848889db244189ce8f2876f2986d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Hospitals
88 rdf:type schema:DefinedTerm
89 N235c63aba7014e30a1e497c53e30944e rdf:first sg:person.011754074443.11
90 rdf:rest N7f992ba923254cd0901a79c5bc3792f1
91 N24289a6465444e44af013e63bb9a2e95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Socioeconomic Factors
93 rdf:type schema:DefinedTerm
94 N2c27cd87f48d42ed8303368f5369b722 schema:name pubmed_id
95 schema:value 28694475
96 rdf:type schema:PropertyValue
97 N335d8b3288b248d29e5081077386a573 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Quality of Health Care
99 rdf:type schema:DefinedTerm
100 N3917ae7ded894cc1844d128aa9803f6e schema:name dimensions_id
101 schema:value pub.1090523170
102 rdf:type schema:PropertyValue
103 N3e6bdfc0f9a14de39c04befcd7bb61b0 rdf:first sg:person.0770233234.36
104 rdf:rest N235c63aba7014e30a1e497c53e30944e
105 N4f762755e0964a2eac63abc06296023b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Geography
107 rdf:type schema:DefinedTerm
108 N608a8d2aad874fe5b743793aab06f997 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Factor Analysis, Statistical
110 rdf:type schema:DefinedTerm
111 N794f127c1cbe4399a81cf02abd01c4bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Humans
113 rdf:type schema:DefinedTerm
114 N7f992ba923254cd0901a79c5bc3792f1 rdf:first sg:person.0720240666.77
115 rdf:rest Nd9bee739032849a2a7456b0647ad3f06
116 N9038b0035040471bb0b9d4797fbf773a schema:name doi
117 schema:value 10.1038/s41598-017-04708-3
118 rdf:type schema:PropertyValue
119 Na059a0823c334269b6edbf96077809fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Climate
121 rdf:type schema:DefinedTerm
122 Na154a5d40a754aacb7396bf9fe57015b schema:volumeNumber 7
123 rdf:type schema:PublicationVolume
124 Nb13407e984b74aeda6b646c478db9966 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Reproducibility of Results
126 rdf:type schema:DefinedTerm
127 Nd9bee739032849a2a7456b0647ad3f06 rdf:first sg:person.0651210417.29
128 rdf:rest rdf:nil
129 Nd9e854a609a943109877415bf2a4178f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Hospital Mortality
131 rdf:type schema:DefinedTerm
132 Ne2cdcad228dc4c3ba4a2113945fdd85f schema:issueNumber 1
133 rdf:type schema:PublicationIssue
134 Nf02d35e3360d45f39a09330855ddf2aa schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 Nf12b58fb349a4b91835d71d657a9ca53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name United States
138 rdf:type schema:DefinedTerm
139 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
140 schema:name Medical and Health Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
143 schema:name Public Health and Health Services
144 rdf:type schema:DefinedTerm
145 sg:grant.2686621 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-04708-3
146 rdf:type schema:MonetaryGrant
147 sg:grant.2686664 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-04708-3
148 rdf:type schema:MonetaryGrant
149 sg:grant.3801821 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-04708-3
150 rdf:type schema:MonetaryGrant
151 sg:journal.1045337 schema:issn 2045-2322
152 schema:name Scientific Reports
153 schema:publisher Springer Nature
154 rdf:type schema:Periodical
155 sg:person.011754074443.11 schema:affiliation grid-institutes:grid.21729.3f
156 schema:familyName Parhi
157 schema:givenName Pradipta
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754074443.11
159 rdf:type schema:Person
160 sg:person.0651210417.29 schema:affiliation grid-institutes:grid.21729.3f
161 schema:familyName Tatonetti
162 schema:givenName Nicholas P.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651210417.29
164 rdf:type schema:Person
165 sg:person.0720240666.77 schema:affiliation grid-institutes:grid.21729.3f
166 schema:familyName Gentine
167 schema:givenName Pierre
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720240666.77
169 rdf:type schema:Person
170 sg:person.0770233234.36 schema:affiliation grid-institutes:grid.21729.3f
171 schema:familyName Boland
172 schema:givenName Mary Regina
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770233234.36
174 rdf:type schema:Person
175 sg:pub.10.1186/1471-2466-11-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051381648
176 https://doi.org/10.1186/1471-2466-11-1
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/1471-2466-11-49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001775458
179 https://doi.org/10.1186/1471-2466-11-49
180 rdf:type schema:CreativeWork
181 grid-institutes:grid.21729.3f schema:alternateName Department of Earth and Environmental Engineering, Columbia University, New York, NY USA
182 Observational Health Data Sciences and Informatics, Columbia University, New York, NY USA
183 schema:name Department of Biomedical Informatics, Columbia University, New York, NY USA
184 Department of Earth and Environmental Engineering, Columbia University, New York, NY USA
185 Department of Medicine, Columbia University, New York, NY USA
186 Department of Systems Biology, Columbia University, New York, NY USA
187 Observational Health Data Sciences and Informatics, Columbia University, New York, NY USA
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...