The electro-optic mechanism and infrared switching dynamic of the hybrid multilayer VO2/Al:ZnO heterojunctions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Peng Zhang, Wu Zhang, Junyong Wang, Kai Jiang, Jinzhong Zhang, Wenwu Li, Jiada Wu, Zhigao Hu, Junhao Chu

ABSTRACT

Active and widely controllable phase transition optical materials have got rapid applications in energy-efficient electronic devices, field of meta-devices and so on. Here, we report the optical properties of the vanadium dioxide (VO2)/aluminum-doped zinc oxide (Al:ZnO) hybrid n-n type heterojunctions and the corresponding electro-optic performances of the devices. Various structures are fabricated to compare the discrepancy of the optical and electrical characteristics. It was found that the reflectance spectra presents the wheel phenomenon rather than increases monotonically with temperature at near-infrared region range. The strong interference effects was found in the hybrid multilayer heterojunction. In addition, the phase transition temperature decreases with increasing the number of the Al:ZnO layer, which can be ascribed to the electron injection to the VO2 film from the Al:ZnO interface. Affected by the double layer Al:ZnO, the abnormal Raman vibration mode was presented in the insulator region. By adding the external voltage on the Al2O3/Al:ZnO/VO2/Al:ZnO, Al2O3/Al:ZnO/VO2 and Al2O3/VO2/Al:ZnO thin-film devices, the infrared optical spectra of the devices can be real-time manipulated by an external voltage. The main effect of joule heating and assistant effect of electric field are illustrated in this work. It is believed that the results will add a more thorough understanding in the application of the VO2/transparent conductive film device. More... »

PAGES

4425

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-04660-2

DOI

http://dx.doi.org/10.1038/s41598-017-04660-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1087309515

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28667297


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Key Laboratory of Polar Materials and Devices (MOE) and Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Electronic Engineering, East China Normal University, 200241, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Peng", 
        "id": "sg:person.010764046300.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010764046300.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "Department of Optical Science and Engineering, Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Wu", 
        "id": "sg:person.013666355735.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666355735.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Key Laboratory of Polar Materials and Devices (MOE) and Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Electronic Engineering, East China Normal University, 200241, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Junyong", 
        "id": "sg:person.015041174627.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015041174627.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Key Laboratory of Polar Materials and Devices (MOE) and Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Electronic Engineering, East China Normal University, 200241, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Kai", 
        "id": "sg:person.0666225251.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666225251.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Key Laboratory of Polar Materials and Devices (MOE) and Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Electronic Engineering, East China Normal University, 200241, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jinzhong", 
        "id": "sg:person.0667374213.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667374213.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Key Laboratory of Polar Materials and Devices (MOE) and Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Electronic Engineering, East China Normal University, 200241, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Wenwu", 
        "id": "sg:person.016330460711.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016330460711.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "Department of Optical Science and Engineering, Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Jiada", 
        "id": "sg:person.07532706267.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07532706267.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Key Laboratory of Polar Materials and Devices (MOE) and Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Electronic Engineering, East China Normal University, 200241, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Zhigao", 
        "id": "sg:person.01003622613.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003622613.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Key Laboratory of Polar Materials and Devices (MOE) and Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Electronic Engineering, East China Normal University, 200241, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chu", 
        "givenName": "Junhao", 
        "id": "sg:person.016170431773.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016170431773.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/c1ee02092g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002404842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004871815", 
          "https://doi.org/10.1038/nphys2733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b04090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005788722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.176401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009500099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.176401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009500099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.116403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009529300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.116403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009529300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009812742", 
          "https://doi.org/10.1038/nature12425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5tc00448a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010280140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5tc04046a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012376101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013051659", 
          "https://doi.org/10.1038/srep00466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4893326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016446242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.216401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.216401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep23119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022399218", 
          "https://doi.org/10.1038/srep23119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4nr00898g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023624254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ta04738a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025513426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3ta14124a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029247013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ta05559d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029417240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl504170d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030067607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl402716d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032433673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am2006299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035905690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep09328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037250293", 
          "https://doi.org/10.1038/srep09328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.256402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038133010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.256402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038133010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solmat.2011.06.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038336816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042463899", 
          "https://doi.org/10.1038/nmat3443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3nr34054f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043571691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044716103", 
          "https://doi.org/10.1038/ncomms10104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045611994", 
          "https://doi.org/10.1038/ncomms8812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn400358x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048365318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl1032205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049742167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl1032205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049742167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl501480f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053682575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemmater.5b04419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053859219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.5b12417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055129326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.5b00873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055136914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsphotonics.5b00244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055138728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsphotonics.5b00249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055138731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am200734k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055141793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am5046982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055146400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl103925m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl103925m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl401823r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl4044828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903765h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903765h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3229949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057921575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3543902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057971167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4754708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058060355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4824834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058084721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4866037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058090398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.036401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.036401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.3.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060776735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.3.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060776735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839416"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Active and widely controllable phase transition optical materials have got rapid applications in energy-efficient electronic devices, field of meta-devices and so on. Here, we report the optical properties of the vanadium dioxide (VO2)/aluminum-doped zinc oxide (Al:ZnO) hybrid n-n type heterojunctions and the corresponding electro-optic performances of the devices. Various structures are fabricated to compare the discrepancy of the optical and electrical characteristics. It was found that the reflectance spectra presents the wheel phenomenon rather than increases monotonically with temperature at near-infrared region range. The strong interference effects was found in the hybrid multilayer heterojunction. In addition, the phase transition temperature decreases with increasing the number of the Al:ZnO layer, which can be ascribed to the electron injection to the VO2 film from the Al:ZnO interface. Affected by the double layer Al:ZnO, the abnormal Raman vibration mode was presented in the insulator region. By adding the external voltage on the Al2O3/Al:ZnO/VO2/Al:ZnO, Al2O3/Al:ZnO/VO2 and Al2O3/VO2/Al:ZnO thin-film devices, the infrared optical spectra of the devices can be real-time manipulated by an external voltage. The main effect of joule heating and assistant effect of electric field are illustrated in this work. It is believed that the results will add a more thorough understanding in the application of the VO2/transparent conductive film device.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-04660-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "The electro-optic mechanism and infrared switching dynamic of the hybrid multilayer VO2/Al:ZnO heterojunctions", 
    "pagination": "4425", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2e62d9741640772ea74dfa695064431d803ec615eb24d9ed50a0c7a1ac8a4099"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28667297"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-04660-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1087309515"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-04660-2", 
      "https://app.dimensions.ai/details/publication/pub.1087309515"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-04660-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-04660-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-04660-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-04660-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-04660-2'


 

This table displays all metadata directly associated to this object as RDF triples.

279 TRIPLES      21 PREDICATES      77 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-04660-2 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N44e705aeacd04af1b996403fc261e34d
4 schema:citation sg:pub.10.1038/nature12425
5 sg:pub.10.1038/ncomms10104
6 sg:pub.10.1038/ncomms8812
7 sg:pub.10.1038/nmat3443
8 sg:pub.10.1038/nphys2733
9 sg:pub.10.1038/srep00466
10 sg:pub.10.1038/srep09328
11 sg:pub.10.1038/srep23119
12 https://doi.org/10.1016/j.solmat.2011.06.047
13 https://doi.org/10.1021/acs.chemmater.5b04419
14 https://doi.org/10.1021/acs.nanolett.5b04090
15 https://doi.org/10.1021/acsami.5b12417
16 https://doi.org/10.1021/acsnano.5b00873
17 https://doi.org/10.1021/acsphotonics.5b00244
18 https://doi.org/10.1021/acsphotonics.5b00249
19 https://doi.org/10.1021/am2006299
20 https://doi.org/10.1021/am200734k
21 https://doi.org/10.1021/am5046982
22 https://doi.org/10.1021/nl1032205
23 https://doi.org/10.1021/nl103925m
24 https://doi.org/10.1021/nl401823r
25 https://doi.org/10.1021/nl402716d
26 https://doi.org/10.1021/nl4044828
27 https://doi.org/10.1021/nl501480f
28 https://doi.org/10.1021/nl504170d
29 https://doi.org/10.1021/nl903765h
30 https://doi.org/10.1021/nn400358x
31 https://doi.org/10.1039/c1ee02092g
32 https://doi.org/10.1039/c3nr34054f
33 https://doi.org/10.1039/c3ta14124a
34 https://doi.org/10.1039/c4nr00898g
35 https://doi.org/10.1039/c4ta04738a
36 https://doi.org/10.1039/c4ta05559d
37 https://doi.org/10.1039/c5tc00448a
38 https://doi.org/10.1039/c5tc04046a
39 https://doi.org/10.1063/1.3229949
40 https://doi.org/10.1063/1.3543902
41 https://doi.org/10.1063/1.4754708
42 https://doi.org/10.1063/1.4824834
43 https://doi.org/10.1063/1.4866037
44 https://doi.org/10.1063/1.4893326
45 https://doi.org/10.1103/physrevlett.108.256402
46 https://doi.org/10.1103/physrevlett.113.216401
47 https://doi.org/10.1103/physrevlett.114.176401
48 https://doi.org/10.1103/physrevlett.116.036401
49 https://doi.org/10.1103/physrevlett.116.116403
50 https://doi.org/10.1103/physrevlett.3.34
51 https://doi.org/10.1103/revmodphys.70.1039
52 schema:datePublished 2017-12
53 schema:datePublishedReg 2017-12-01
54 schema:description Active and widely controllable phase transition optical materials have got rapid applications in energy-efficient electronic devices, field of meta-devices and so on. Here, we report the optical properties of the vanadium dioxide (VO<sub>2</sub>)/aluminum-doped zinc oxide (Al:ZnO) hybrid n-n type heterojunctions and the corresponding electro-optic performances of the devices. Various structures are fabricated to compare the discrepancy of the optical and electrical characteristics. It was found that the reflectance spectra presents the wheel phenomenon rather than increases monotonically with temperature at near-infrared region range. The strong interference effects was found in the hybrid multilayer heterojunction. In addition, the phase transition temperature decreases with increasing the number of the Al:ZnO layer, which can be ascribed to the electron injection to the VO<sub>2</sub> film from the Al:ZnO interface. Affected by the double layer Al:ZnO, the abnormal Raman vibration mode was presented in the insulator region. By adding the external voltage on the Al<sub>2</sub>O<sub>3</sub>/Al:ZnO/VO<sub>2</sub>/Al:ZnO, Al<sub>2</sub>O<sub>3</sub>/Al:ZnO/VO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub>/VO<sub>2</sub>/Al:ZnO thin-film devices, the infrared optical spectra of the devices can be real-time manipulated by an external voltage. The main effect of joule heating and assistant effect of electric field are illustrated in this work. It is believed that the results will add a more thorough understanding in the application of the VO<sub>2</sub>/transparent conductive film device.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree true
58 schema:isPartOf N61ddadba9f0648d395848c00514cf4e1
59 Nc020ee48679d4ff3bfd97a3dd8779e78
60 sg:journal.1045337
61 schema:name The electro-optic mechanism and infrared switching dynamic of the hybrid multilayer VO2/Al:ZnO heterojunctions
62 schema:pagination 4425
63 schema:productId N502e157ed4aa444fa937c3457925693f
64 N619ce6e42cae4edbadd9ec126b4d680d
65 N8b3432315f784b4c822b5f7aa10f092a
66 N8d22fb046038445ca7f21926af497437
67 Ncc94c294ea3242598cff90c25fd0fe58
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087309515
69 https://doi.org/10.1038/s41598-017-04660-2
70 schema:sdDatePublished 2019-04-10T19:53
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Na6edf66902164b698ae2cc4c6468c04e
73 schema:url https://www.nature.com/articles/s41598-017-04660-2
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N1fa7a03d3f754376aef630825c4dfa3b rdf:first sg:person.0666225251.45
78 rdf:rest Nb822276d07654db9b77e0261535a42c1
79 N44e705aeacd04af1b996403fc261e34d rdf:first sg:person.010764046300.36
80 rdf:rest Nea36ddffaac546bc9ea607d254a568d2
81 N502e157ed4aa444fa937c3457925693f schema:name doi
82 schema:value 10.1038/s41598-017-04660-2
83 rdf:type schema:PropertyValue
84 N58e14e2d27f14304ab86f784d3dc317c rdf:first sg:person.01003622613.97
85 rdf:rest Ne972ec6815454d058dc138f02c7608ea
86 N619ce6e42cae4edbadd9ec126b4d680d schema:name nlm_unique_id
87 schema:value 101563288
88 rdf:type schema:PropertyValue
89 N61ddadba9f0648d395848c00514cf4e1 schema:issueNumber 1
90 rdf:type schema:PublicationIssue
91 N8b3432315f784b4c822b5f7aa10f092a schema:name readcube_id
92 schema:value 2e62d9741640772ea74dfa695064431d803ec615eb24d9ed50a0c7a1ac8a4099
93 rdf:type schema:PropertyValue
94 N8d22fb046038445ca7f21926af497437 schema:name pubmed_id
95 schema:value 28667297
96 rdf:type schema:PropertyValue
97 N929281117df349f487fbee803e0dcf09 rdf:first sg:person.07532706267.85
98 rdf:rest N58e14e2d27f14304ab86f784d3dc317c
99 Na6edf66902164b698ae2cc4c6468c04e schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Nb2a725c9a1ec4e469b598eb92dbce3e4 rdf:first sg:person.015041174627.71
102 rdf:rest N1fa7a03d3f754376aef630825c4dfa3b
103 Nb822276d07654db9b77e0261535a42c1 rdf:first sg:person.0667374213.29
104 rdf:rest Neafc20b5783144aaa912d28c2c47e8e3
105 Nc020ee48679d4ff3bfd97a3dd8779e78 schema:volumeNumber 7
106 rdf:type schema:PublicationVolume
107 Ncc94c294ea3242598cff90c25fd0fe58 schema:name dimensions_id
108 schema:value pub.1087309515
109 rdf:type schema:PropertyValue
110 Ne972ec6815454d058dc138f02c7608ea rdf:first sg:person.016170431773.82
111 rdf:rest rdf:nil
112 Nea36ddffaac546bc9ea607d254a568d2 rdf:first sg:person.013666355735.23
113 rdf:rest Nb2a725c9a1ec4e469b598eb92dbce3e4
114 Neafc20b5783144aaa912d28c2c47e8e3 rdf:first sg:person.016330460711.11
115 rdf:rest N929281117df349f487fbee803e0dcf09
116 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
117 schema:name Engineering
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
120 schema:name Materials Engineering
121 rdf:type schema:DefinedTerm
122 sg:journal.1045337 schema:issn 2045-2322
123 schema:name Scientific Reports
124 rdf:type schema:Periodical
125 sg:person.01003622613.97 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
126 schema:familyName Hu
127 schema:givenName Zhigao
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003622613.97
129 rdf:type schema:Person
130 sg:person.010764046300.36 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
131 schema:familyName Zhang
132 schema:givenName Peng
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010764046300.36
134 rdf:type schema:Person
135 sg:person.013666355735.23 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
136 schema:familyName Zhang
137 schema:givenName Wu
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666355735.23
139 rdf:type schema:Person
140 sg:person.015041174627.71 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
141 schema:familyName Wang
142 schema:givenName Junyong
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015041174627.71
144 rdf:type schema:Person
145 sg:person.016170431773.82 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
146 schema:familyName Chu
147 schema:givenName Junhao
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016170431773.82
149 rdf:type schema:Person
150 sg:person.016330460711.11 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
151 schema:familyName Li
152 schema:givenName Wenwu
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016330460711.11
154 rdf:type schema:Person
155 sg:person.0666225251.45 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
156 schema:familyName Jiang
157 schema:givenName Kai
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666225251.45
159 rdf:type schema:Person
160 sg:person.0667374213.29 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
161 schema:familyName Zhang
162 schema:givenName Jinzhong
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667374213.29
164 rdf:type schema:Person
165 sg:person.07532706267.85 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
166 schema:familyName Wu
167 schema:givenName Jiada
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07532706267.85
169 rdf:type schema:Person
170 sg:pub.10.1038/nature12425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009812742
171 https://doi.org/10.1038/nature12425
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/ncomms10104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044716103
174 https://doi.org/10.1038/ncomms10104
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/ncomms8812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045611994
177 https://doi.org/10.1038/ncomms8812
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nmat3443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042463899
180 https://doi.org/10.1038/nmat3443
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nphys2733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004871815
183 https://doi.org/10.1038/nphys2733
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/srep00466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013051659
186 https://doi.org/10.1038/srep00466
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/srep09328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037250293
189 https://doi.org/10.1038/srep09328
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/srep23119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022399218
192 https://doi.org/10.1038/srep23119
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.solmat.2011.06.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038336816
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1021/acs.chemmater.5b04419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053859219
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1021/acs.nanolett.5b04090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005788722
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1021/acsami.5b12417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055129326
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1021/acsnano.5b00873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055136914
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1021/acsphotonics.5b00244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055138728
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1021/acsphotonics.5b00249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055138731
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1021/am2006299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035905690
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1021/am200734k schema:sameAs https://app.dimensions.ai/details/publication/pub.1055141793
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1021/am5046982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055146400
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1021/nl1032205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049742167
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1021/nl103925m schema:sameAs https://app.dimensions.ai/details/publication/pub.1056218347
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1021/nl401823r schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220165
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1021/nl402716d schema:sameAs https://app.dimensions.ai/details/publication/pub.1032433673
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1021/nl4044828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220560
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1021/nl501480f schema:sameAs https://app.dimensions.ai/details/publication/pub.1053682575
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1021/nl504170d schema:sameAs https://app.dimensions.ai/details/publication/pub.1030067607
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1021/nl903765h schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222315
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1021/nn400358x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048365318
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1039/c1ee02092g schema:sameAs https://app.dimensions.ai/details/publication/pub.1002404842
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1039/c3nr34054f schema:sameAs https://app.dimensions.ai/details/publication/pub.1043571691
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1039/c3ta14124a schema:sameAs https://app.dimensions.ai/details/publication/pub.1029247013
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1039/c4nr00898g schema:sameAs https://app.dimensions.ai/details/publication/pub.1023624254
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1039/c4ta04738a schema:sameAs https://app.dimensions.ai/details/publication/pub.1025513426
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1039/c4ta05559d schema:sameAs https://app.dimensions.ai/details/publication/pub.1029417240
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1039/c5tc00448a schema:sameAs https://app.dimensions.ai/details/publication/pub.1010280140
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1039/c5tc04046a schema:sameAs https://app.dimensions.ai/details/publication/pub.1012376101
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1063/1.3229949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057921575
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1063/1.3543902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057971167
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1063/1.4754708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058060355
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1063/1.4824834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058084721
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1063/1.4866037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058090398
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1063/1.4893326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016446242
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1103/physrevlett.108.256402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038133010
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1103/physrevlett.113.216401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574696
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1103/physrevlett.114.176401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009500099
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1103/physrevlett.116.036401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764859
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1103/physrevlett.116.116403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009529300
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1103/physrevlett.3.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060776735
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1103/revmodphys.70.1039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839416
273 rdf:type schema:CreativeWork
274 https://www.grid.ac/institutes/grid.22069.3f schema:alternateName East China Normal University
275 schema:name Key Laboratory of Polar Materials and Devices (MOE) and Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Electronic Engineering, East China Normal University, 200241, Shanghai, China
276 rdf:type schema:Organization
277 https://www.grid.ac/institutes/grid.8547.e schema:alternateName Fudan University
278 schema:name Department of Optical Science and Engineering, Fudan University, 200433, Shanghai, China
279 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...