Ontology type: schema:ScholarlyArticle Open Access: True
2017-12
AUTHORSBlue B. Lake, Simone Codeluppi, Yun C. Yung, Derek Gao, Jerold Chun, Peter V. Kharchenko, Sten Linnarsson, Kun Zhang
ABSTRACTSignificant heterogeneities in gene expression among individual cells are typically interrogated using single whole cell approaches. However, tissues that have highly interconnected processes, such as in the brain, present unique challenges. Single-nucleus RNA sequencing (SNS) has emerged as an alternative method of assessing a cell's transcriptome through the use of isolated nuclei. However, studies directly comparing expression data between nuclei and whole cells are lacking. Here, we have characterized nuclear and whole cell transcriptomes in mouse single neurons and provided a normalization strategy to reduce method-specific differences related to the length of genic regions. We confirmed a high concordance between nuclear and whole cell transcriptomes in the expression of cell type and metabolic modeling markers, but less so for a subset of genes associated with mitochondrial respiration. Therefore, our results indicate that single-nucleus transcriptome sequencing provides an effective means to profile cell type expression dynamics in previously inaccessible tissues. More... »
PAGES6031
http://scigraph.springernature.com/pub.10.1038/s41598-017-04426-w
DOIhttp://dx.doi.org/10.1038/s41598-017-04426-w
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1090717718
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/28729663
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of California, San Diego",
"id": "https://www.grid.ac/institutes/grid.266100.3",
"name": [
"Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA"
],
"type": "Organization"
},
"familyName": "Lake",
"givenName": "Blue B.",
"id": "sg:person.01136526411.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136526411.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Karolinska Institute",
"id": "https://www.grid.ac/institutes/grid.4714.6",
"name": [
"Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177, Stockholm, Sweden",
"Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177, Stockholm, Sweden"
],
"type": "Organization"
},
"familyName": "Codeluppi",
"givenName": "Simone",
"id": "sg:person.01310574532.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310574532.40"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Sanford Burnham Prebys Medical Discovery Institute",
"id": "https://www.grid.ac/institutes/grid.479509.6",
"name": [
"Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA"
],
"type": "Organization"
},
"familyName": "Yung",
"givenName": "Yun C.",
"id": "sg:person.01343037342.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343037342.64"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of California, San Diego",
"id": "https://www.grid.ac/institutes/grid.266100.3",
"name": [
"Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA"
],
"type": "Organization"
},
"familyName": "Gao",
"givenName": "Derek",
"id": "sg:person.012572404251.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012572404251.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Sanford Burnham Prebys Medical Discovery Institute",
"id": "https://www.grid.ac/institutes/grid.479509.6",
"name": [
"Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA"
],
"type": "Organization"
},
"familyName": "Chun",
"givenName": "Jerold",
"id": "sg:person.0635541747.76",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635541747.76"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Harvard University",
"id": "https://www.grid.ac/institutes/grid.38142.3c",
"name": [
"Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA"
],
"type": "Organization"
},
"familyName": "Kharchenko",
"givenName": "Peter V.",
"id": "sg:person.01050662451.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050662451.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Karolinska Institute",
"id": "https://www.grid.ac/institutes/grid.4714.6",
"name": [
"Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177, Stockholm, Sweden"
],
"type": "Organization"
},
"familyName": "Linnarsson",
"givenName": "Sten",
"id": "sg:person.0762434635.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762434635.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of California, San Diego",
"id": "https://www.grid.ac/institutes/grid.266100.3",
"name": [
"Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA"
],
"type": "Organization"
},
"familyName": "Zhang",
"givenName": "Kun",
"id": "sg:person.010125337727.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010125337727.46"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nbt.2967",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001987369",
"https://doi.org/10.1038/nbt.2967"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cell.2015.05.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006029874"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth1005-731",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010489207",
"https://doi.org/10.1038/nmeth1005-731"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth1005-731",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010489207",
"https://doi.org/10.1038/nmeth1005-731"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gkt214",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011464256"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.3734",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011517405",
"https://doi.org/10.1038/nmeth.3734"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nn.4216",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015676613",
"https://doi.org/10.1038/nn.4216"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.aab1785",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017106459"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.aab1785",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017106459"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2164-8-340",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018858473",
"https://doi.org/10.1186/1471-2164-8-340"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.celrep.2015.11.036",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019836033"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cell.2012.02.052",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025467184"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.0610772104",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027487019"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gku095",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029930175"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.aad7038",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031808908"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0896-6273(95)90065-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031862881"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1752-0509-4-140",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032595960",
"https://doi.org/10.1186/1752-0509-4-140"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nprot.2016.015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036447782",
"https://doi.org/10.1038/nprot.2016.015"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.1319700110",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037851904"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gkw739",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039921250"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cne.22436",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042229693"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cne.22436",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042229693"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt.3269",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042523106",
"https://doi.org/10.1038/nbt.3269"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt.3443",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044457005",
"https://doi.org/10.1038/nbt.3443"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt.2720",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045584197",
"https://doi.org/10.1038/nbt.2720"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1523/jneurosci.4560-04.2005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045679749"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.7554/elife.05116",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046151503"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.aaf1204",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048718601"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0896-6273(01)00211-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049529634"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nsmb.2143",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050633589",
"https://doi.org/10.1038/nsmb.2143"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ncomms11022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051093538",
"https://doi.org/10.1038/ncomms11022"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.aaa1934",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051709523"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-12",
"datePublishedReg": "2017-12-01",
"description": "Significant heterogeneities in gene expression among individual cells are typically interrogated using single whole cell approaches. However, tissues that have highly interconnected processes, such as in the brain, present unique challenges. Single-nucleus RNA sequencing (SNS) has emerged as an alternative method of assessing a cell's transcriptome through the use of isolated nuclei. However, studies directly comparing expression data between nuclei and whole cells are lacking. Here, we have characterized nuclear and whole cell transcriptomes in mouse single neurons and provided a normalization strategy to reduce method-specific differences related to the length of genic regions. We confirmed a high concordance between nuclear and whole cell transcriptomes in the expression of cell type and metabolic modeling markers, but less so for a subset of genes associated with mitochondrial respiration. Therefore, our results indicate that single-nucleus transcriptome sequencing provides an effective means to profile cell type expression dynamics in previously inaccessible tissues.",
"genre": "research_article",
"id": "sg:pub.10.1038/s41598-017-04426-w",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.4243783",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2692535",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1045337",
"issn": [
"2045-2322"
],
"name": "Scientific Reports",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "7"
}
],
"name": "A comparative strategy for single-nucleus and single-cell transcriptomes confirms accuracy in predicted cell-type expression from nuclear RNA",
"pagination": "6031",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"13359a0978c4067266bbf6842642ff367636c5fd02462b7070d29a171966ffb5"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"28729663"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101563288"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41598-017-04426-w"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1090717718"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41598-017-04426-w",
"https://app.dimensions.ai/details/publication/pub.1090717718"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T02:21",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000552.jsonl",
"type": "ScholarlyArticle",
"url": "https://www.nature.com/articles/s41598-017-04426-w"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-04426-w'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-04426-w'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-04426-w'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-04426-w'
This table displays all metadata directly associated to this object as RDF triples.
230 TRIPLES
21 PREDICATES
58 URIs
21 LITERALS
9 BLANK NODES