Multiple thermal spin transport performances of graphene nanoribbon heterojuction co-doped with Nitrogen and Boron View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-06-21

AUTHORS

Hai Huang, Guoying Gao, Huahua Fu, Anmin Zheng, Fei Zou, Guangqian Ding, Kailun Yao

ABSTRACT

Graphene nanoribbon is a popular material in spintronics owing to its unique electronic properties. Here, we propose a novel spin caloritronics device based on zigzag graphene nanoribbon (ZGNR), which is a heterojunction consisting of a pure single-hydrogen-terminated ZGNR and one doped with nitrogen and boron. Using the density functional theory combined with the non-equilibrium Green’s function, we investigate the thermal spin transport properties of the heterojunction under different magnetic configurations only by a temperature gradient without an external gate or bias voltage. Our results indicate that thermally-induced spin polarized currents can be tuned by switching the magnetic configurations, resulting in a perfect thermal colossal magnetoresistance effect. The heterojunctions with different magnetic configurations exhibit a variety of excellent transport characteristics, including the spin-Seebeck effect, the spin-filtering effect, the temperature switching effect, the negative differential thermal resistance effect and the spin-Seebeck diode feature, which makes the heterojunction a promising candidate for high-efficiently multifunctional spin caloritronic applications. More... »

PAGES

3955

References to SciGraph publications

  • 2012-01. Giant spin-dependent thermoelectric effect in magnetic tunnel junctions in NATURE COMMUNICATIONS
  • 2008-06-15. Prediction of very large values of magnetoresistance in a graphene nanoribbon device in NATURE NANOTECHNOLOGY
  • 2012-02-05. Electron spins blow hot and cold in NATURE NANOTECHNOLOGY
  • 2010-01. The renaissance of friction in NATURE MATERIALS
  • 2010-08-08. Very large magnetoresistance in graphene nanoribbons in NATURE NANOTECHNOLOGY
  • 2012-04-23. Spin caloritronics in NATURE MATERIALS
  • 2010-09-26. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor in NATURE MATERIALS
  • 2006-11. Half-metallic graphene nanoribbons in NATURE
  • 2008-10. Observation of the spin Seebeck effect in NATURE
  • 2014-11-10. Charges ride the spin wave in NATURE NANOTECHNOLOGY
  • 2013-03-05. Spin Seebeck Effect and Thermal Colossal Magnetoresistance in Graphene Nanoribbon Heterojunction in SCIENTIFIC REPORTS
  • 2007-03. The rise of graphene in NATURE MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-017-04287-3

    DOI

    http://dx.doi.org/10.1038/s41598-017-04287-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1086052370

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28638083


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Condensed Matter Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Physics and Optoelectronic Engineering, Yangtze University, 434023, Jingzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.410654.2", 
              "name": [
                "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China", 
                "School of Physics and Optoelectronic Engineering, Yangtze University, 434023, Jingzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Hai", 
            "id": "sg:person.012347442437.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012347442437.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China", 
              "id": "http://www.grid.ac/institutes/grid.33199.31", 
              "name": [
                "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gao", 
            "givenName": "Guoying", 
            "id": "sg:person.013345107235.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345107235.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China", 
              "id": "http://www.grid.ac/institutes/grid.33199.31", 
              "name": [
                "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fu", 
            "givenName": "Huahua", 
            "id": "sg:person.01330163075.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330163075.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China", 
              "id": "http://www.grid.ac/institutes/grid.33199.31", 
              "name": [
                "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zheng", 
            "givenName": "Anmin", 
            "id": "sg:person.016043240765.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043240765.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China", 
              "id": "http://www.grid.ac/institutes/grid.33199.31", 
              "name": [
                "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zou", 
            "givenName": "Fei", 
            "id": "sg:person.013233340303.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233340303.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China", 
              "id": "http://www.grid.ac/institutes/grid.33199.31", 
              "name": [
                "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ding", 
            "givenName": "Guangqian", 
            "id": "sg:person.0774513447.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774513447.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China", 
              "id": "http://www.grid.ac/institutes/grid.33199.31", 
              "name": [
                "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Kailun", 
            "id": "sg:person.012133406471.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012133406471.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature05180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006934660", 
              "https://doi.org/10.1038/nature05180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052791836", 
              "https://doi.org/10.1038/nmat1849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1748", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008175488", 
              "https://doi.org/10.1038/ncomms1748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044789326", 
              "https://doi.org/10.1038/nnano.2008.163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047234331", 
              "https://doi.org/10.1038/nature07321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep01380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047042012", 
              "https://doi.org/10.1038/srep01380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002560372", 
              "https://doi.org/10.1038/nnano.2014.279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004813700", 
              "https://doi.org/10.1038/nmat2860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038059002", 
              "https://doi.org/10.1038/nmat2599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020683218", 
              "https://doi.org/10.1038/nnano.2012.26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018153553", 
              "https://doi.org/10.1038/nmat3301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030081519", 
              "https://doi.org/10.1038/nnano.2010.154"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-06-21", 
        "datePublishedReg": "2017-06-21", 
        "description": "Graphene nanoribbon is a popular material in spintronics owing to its unique electronic properties. Here, we propose a novel spin caloritronics device based on zigzag graphene nanoribbon (ZGNR), which is a heterojunction consisting of a pure single-hydrogen-terminated ZGNR and one doped with nitrogen and boron. Using the density functional theory combined with the non-equilibrium Green\u2019s function, we investigate the thermal spin transport properties of the heterojunction under different magnetic configurations only by a temperature gradient without an external gate or bias voltage. Our results indicate that thermally-induced spin polarized currents can be tuned by switching the magnetic configurations, resulting in a perfect thermal colossal magnetoresistance effect. The heterojunctions with different magnetic configurations exhibit a variety of excellent transport characteristics, including the spin-Seebeck effect, the spin-filtering effect, the temperature switching effect, the negative differential thermal resistance effect and the spin-Seebeck diode feature, which makes the heterojunction a promising candidate for high-efficiently multifunctional spin caloritronic applications.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-017-04287-3", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7203722", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8120850", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "zigzag graphene nanoribbons", 
          "different magnetic configurations", 
          "magnetic configuration", 
          "graphene nanoribbons", 
          "thermal spin transport properties", 
          "non-equilibrium Green's function", 
          "spin transport properties", 
          "spin caloritronic applications", 
          "spin filtering effect", 
          "spin caloritronic devices", 
          "spin Seebeck effect", 
          "unique electronic properties", 
          "caloritronic applications", 
          "excellent transport characteristics", 
          "negative differential thermal resistance effect", 
          "density functional theory", 
          "thermal resistance effect", 
          "caloritronic devices", 
          "external gate", 
          "colossal magnetoresistance effect", 
          "electronic properties", 
          "bias voltage", 
          "switching effect", 
          "transport properties", 
          "functional theory", 
          "heterojunction", 
          "magnetoresistance effect", 
          "transport performance", 
          "popular material", 
          "temperature gradient", 
          "nanoribbons", 
          "Green's function", 
          "transport characteristics", 
          "resistance effect", 
          "promising candidate", 
          "spintronics", 
          "spin", 
          "boron", 
          "configuration", 
          "heterojuction", 
          "voltage", 
          "properties", 
          "gate", 
          "devices", 
          "current", 
          "materials", 
          "performance", 
          "nitrogen", 
          "theory", 
          "applications", 
          "effect", 
          "gradient", 
          "candidates", 
          "characteristics", 
          "function", 
          "results", 
          "features", 
          "variety"
        ], 
        "name": "Multiple thermal spin transport performances of graphene nanoribbon heterojuction co-doped with Nitrogen and Boron", 
        "pagination": "3955", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1086052370"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-017-04287-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28638083"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-017-04287-3", 
          "https://app.dimensions.ai/details/publication/pub.1086052370"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_739.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-017-04287-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-04287-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-04287-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-04287-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-04287-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    224 TRIPLES      21 PREDICATES      97 URIs      75 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-017-04287-3 schema:about anzsrc-for:02
    2 anzsrc-for:0204
    3 anzsrc-for:09
    4 anzsrc-for:0912
    5 schema:author N4e0c4cb13d2c49cb8b8833477843a86e
    6 schema:citation sg:pub.10.1038/nature05180
    7 sg:pub.10.1038/nature07321
    8 sg:pub.10.1038/ncomms1748
    9 sg:pub.10.1038/nmat1849
    10 sg:pub.10.1038/nmat2599
    11 sg:pub.10.1038/nmat2860
    12 sg:pub.10.1038/nmat3301
    13 sg:pub.10.1038/nnano.2008.163
    14 sg:pub.10.1038/nnano.2010.154
    15 sg:pub.10.1038/nnano.2012.26
    16 sg:pub.10.1038/nnano.2014.279
    17 sg:pub.10.1038/srep01380
    18 schema:datePublished 2017-06-21
    19 schema:datePublishedReg 2017-06-21
    20 schema:description Graphene nanoribbon is a popular material in spintronics owing to its unique electronic properties. Here, we propose a novel spin caloritronics device based on zigzag graphene nanoribbon (ZGNR), which is a heterojunction consisting of a pure single-hydrogen-terminated ZGNR and one doped with nitrogen and boron. Using the density functional theory combined with the non-equilibrium Green’s function, we investigate the thermal spin transport properties of the heterojunction under different magnetic configurations only by a temperature gradient without an external gate or bias voltage. Our results indicate that thermally-induced spin polarized currents can be tuned by switching the magnetic configurations, resulting in a perfect thermal colossal magnetoresistance effect. The heterojunctions with different magnetic configurations exhibit a variety of excellent transport characteristics, including the spin-Seebeck effect, the spin-filtering effect, the temperature switching effect, the negative differential thermal resistance effect and the spin-Seebeck diode feature, which makes the heterojunction a promising candidate for high-efficiently multifunctional spin caloritronic applications.
    21 schema:genre article
    22 schema:isAccessibleForFree true
    23 schema:isPartOf N6ab20bd474344298b619491a37139d6e
    24 Nf192482adf6e41cb953442ebafa92b6a
    25 sg:journal.1045337
    26 schema:keywords Green's function
    27 applications
    28 bias voltage
    29 boron
    30 caloritronic applications
    31 caloritronic devices
    32 candidates
    33 characteristics
    34 colossal magnetoresistance effect
    35 configuration
    36 current
    37 density functional theory
    38 devices
    39 different magnetic configurations
    40 effect
    41 electronic properties
    42 excellent transport characteristics
    43 external gate
    44 features
    45 function
    46 functional theory
    47 gate
    48 gradient
    49 graphene nanoribbons
    50 heterojuction
    51 heterojunction
    52 magnetic configuration
    53 magnetoresistance effect
    54 materials
    55 nanoribbons
    56 negative differential thermal resistance effect
    57 nitrogen
    58 non-equilibrium Green's function
    59 performance
    60 popular material
    61 promising candidate
    62 properties
    63 resistance effect
    64 results
    65 spin
    66 spin Seebeck effect
    67 spin caloritronic applications
    68 spin caloritronic devices
    69 spin filtering effect
    70 spin transport properties
    71 spintronics
    72 switching effect
    73 temperature gradient
    74 theory
    75 thermal resistance effect
    76 thermal spin transport properties
    77 transport characteristics
    78 transport performance
    79 transport properties
    80 unique electronic properties
    81 variety
    82 voltage
    83 zigzag graphene nanoribbons
    84 schema:name Multiple thermal spin transport performances of graphene nanoribbon heterojuction co-doped with Nitrogen and Boron
    85 schema:pagination 3955
    86 schema:productId N52fe04ba406d49e2a04f6ddf60e2fe93
    87 N6ac4b0f99b794297b8560b9e104fcf33
    88 Ne20d36dbb4194d858e724ab807e44eaf
    89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086052370
    90 https://doi.org/10.1038/s41598-017-04287-3
    91 schema:sdDatePublished 2022-09-02T16:01
    92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    93 schema:sdPublisher Ne697faf3fdc1479093ef9929a28a8f8a
    94 schema:url https://doi.org/10.1038/s41598-017-04287-3
    95 sgo:license sg:explorer/license/
    96 sgo:sdDataset articles
    97 rdf:type schema:ScholarlyArticle
    98 N3e37a9b50ef54eae9ad9a439e240f035 rdf:first sg:person.013345107235.61
    99 rdf:rest Nd0be9b5e66994da4b0d39dc807f244c0
    100 N4e0c4cb13d2c49cb8b8833477843a86e rdf:first sg:person.012347442437.66
    101 rdf:rest N3e37a9b50ef54eae9ad9a439e240f035
    102 N52fe04ba406d49e2a04f6ddf60e2fe93 schema:name pubmed_id
    103 schema:value 28638083
    104 rdf:type schema:PropertyValue
    105 N5af88565f51e484db301e6612085f5ec rdf:first sg:person.012133406471.13
    106 rdf:rest rdf:nil
    107 N6ab20bd474344298b619491a37139d6e schema:issueNumber 1
    108 rdf:type schema:PublicationIssue
    109 N6ac4b0f99b794297b8560b9e104fcf33 schema:name dimensions_id
    110 schema:value pub.1086052370
    111 rdf:type schema:PropertyValue
    112 Na7c2f280b3e0475fbd69d44876098271 rdf:first sg:person.016043240765.62
    113 rdf:rest Nfe096d359dcc436da54da46cf636f19a
    114 Nd0be9b5e66994da4b0d39dc807f244c0 rdf:first sg:person.01330163075.55
    115 rdf:rest Na7c2f280b3e0475fbd69d44876098271
    116 Ne20d36dbb4194d858e724ab807e44eaf schema:name doi
    117 schema:value 10.1038/s41598-017-04287-3
    118 rdf:type schema:PropertyValue
    119 Ne697faf3fdc1479093ef9929a28a8f8a schema:name Springer Nature - SN SciGraph project
    120 rdf:type schema:Organization
    121 Nf192482adf6e41cb953442ebafa92b6a schema:volumeNumber 7
    122 rdf:type schema:PublicationVolume
    123 Nf7b2d23c55394009b78a288b3d8a5040 rdf:first sg:person.0774513447.06
    124 rdf:rest N5af88565f51e484db301e6612085f5ec
    125 Nfe096d359dcc436da54da46cf636f19a rdf:first sg:person.013233340303.23
    126 rdf:rest Nf7b2d23c55394009b78a288b3d8a5040
    127 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Physical Sciences
    129 rdf:type schema:DefinedTerm
    130 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Condensed Matter Physics
    132 rdf:type schema:DefinedTerm
    133 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Engineering
    135 rdf:type schema:DefinedTerm
    136 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Materials Engineering
    138 rdf:type schema:DefinedTerm
    139 sg:grant.7203722 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-04287-3
    140 rdf:type schema:MonetaryGrant
    141 sg:grant.8120850 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-04287-3
    142 rdf:type schema:MonetaryGrant
    143 sg:journal.1045337 schema:issn 2045-2322
    144 schema:name Scientific Reports
    145 schema:publisher Springer Nature
    146 rdf:type schema:Periodical
    147 sg:person.012133406471.13 schema:affiliation grid-institutes:grid.33199.31
    148 schema:familyName Yao
    149 schema:givenName Kailun
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012133406471.13
    151 rdf:type schema:Person
    152 sg:person.012347442437.66 schema:affiliation grid-institutes:grid.410654.2
    153 schema:familyName Huang
    154 schema:givenName Hai
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012347442437.66
    156 rdf:type schema:Person
    157 sg:person.013233340303.23 schema:affiliation grid-institutes:grid.33199.31
    158 schema:familyName Zou
    159 schema:givenName Fei
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233340303.23
    161 rdf:type schema:Person
    162 sg:person.01330163075.55 schema:affiliation grid-institutes:grid.33199.31
    163 schema:familyName Fu
    164 schema:givenName Huahua
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330163075.55
    166 rdf:type schema:Person
    167 sg:person.013345107235.61 schema:affiliation grid-institutes:grid.33199.31
    168 schema:familyName Gao
    169 schema:givenName Guoying
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345107235.61
    171 rdf:type schema:Person
    172 sg:person.016043240765.62 schema:affiliation grid-institutes:grid.33199.31
    173 schema:familyName Zheng
    174 schema:givenName Anmin
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043240765.62
    176 rdf:type schema:Person
    177 sg:person.0774513447.06 schema:affiliation grid-institutes:grid.33199.31
    178 schema:familyName Ding
    179 schema:givenName Guangqian
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774513447.06
    181 rdf:type schema:Person
    182 sg:pub.10.1038/nature05180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006934660
    183 https://doi.org/10.1038/nature05180
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nature07321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047234331
    186 https://doi.org/10.1038/nature07321
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/ncomms1748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008175488
    189 https://doi.org/10.1038/ncomms1748
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
    192 https://doi.org/10.1038/nmat1849
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nmat2599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038059002
    195 https://doi.org/10.1038/nmat2599
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nmat2860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004813700
    198 https://doi.org/10.1038/nmat2860
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nmat3301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018153553
    201 https://doi.org/10.1038/nmat3301
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nnano.2008.163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044789326
    204 https://doi.org/10.1038/nnano.2008.163
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nnano.2010.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030081519
    207 https://doi.org/10.1038/nnano.2010.154
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nnano.2012.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020683218
    210 https://doi.org/10.1038/nnano.2012.26
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nnano.2014.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002560372
    213 https://doi.org/10.1038/nnano.2014.279
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/srep01380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047042012
    216 https://doi.org/10.1038/srep01380
    217 rdf:type schema:CreativeWork
    218 grid-institutes:grid.33199.31 schema:alternateName School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China
    219 schema:name School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China
    220 rdf:type schema:Organization
    221 grid-institutes:grid.410654.2 schema:alternateName School of Physics and Optoelectronic Engineering, Yangtze University, 434023, Jingzhou, China
    222 schema:name School of Physics and Optoelectronic Engineering, Yangtze University, 434023, Jingzhou, China
    223 School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China
    224 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...