Ontology type: schema:ScholarlyArticle Open Access: True
2017-06-08
AUTHORSMohammad Esmail Aryaee Panah, Elizaveta S. Semenova, Andrei V. Lavrinenko
ABSTRACTCantilever sensors are among the most important microelectromechanical systems (MEMS), which are usually actuated by electrostatic forces or piezoelectric elements. Although well-developed microfabrication technology has made silicon the prevailing material for MEMS, unique properties of other materials are overlooked in this context. Here we investigate optically induced forces exerted upon a semi-insulating InP waveguide suspended above a highly doped InP:Si substrate, in three different regimes: the epsilon-near-zero (ENZ), with excitation of surface plasmon polaritons (SPPs) and phonons excitation. An order of magnitude amplification of the force is observed when light is coupled to SPPs, and three orders of magnitude amplification is achieved in the phonon excitation regime. In the ENZ regime, the force is found to be repulsive and higher than that in a waveguide suspended above a dielectric substrate. Low losses in InP:Si result in a big propagation length. The induced deflection can be detected by measuring the phase change of the light when passing through the waveguide, which enables all-optical functioning, and paves the way towards integration and miniaturization of micro-cantilevers. In addition, tunability of the ENZ and the SPP excitation wavelength ranges, via adjusting the carrier concentration, provides an extra degree of freedom for designing MEMS devices. More... »
PAGES3106
http://scigraph.springernature.com/pub.10.1038/s41598-017-03409-1
DOIhttp://dx.doi.org/10.1038/s41598-017-03409-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1085846317
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/28596522
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Technical University of Denmark, Department of Photonics Engineering, \u00d8rsteds Plads, Building 343, DK-2800 Kgs, Lyngby, Denmark",
"id": "http://www.grid.ac/institutes/grid.5170.3",
"name": [
"Technical University of Denmark, Department of Photonics Engineering, \u00d8rsteds Plads, Building 343, DK-2800 Kgs, Lyngby, Denmark"
],
"type": "Organization"
},
"familyName": "Aryaee Panah",
"givenName": "Mohammad Esmail",
"id": "sg:person.012142050667.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012142050667.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Technical University of Denmark, Department of Photonics Engineering, \u00d8rsteds Plads, Building 343, DK-2800 Kgs, Lyngby, Denmark",
"id": "http://www.grid.ac/institutes/grid.5170.3",
"name": [
"Technical University of Denmark, Department of Photonics Engineering, \u00d8rsteds Plads, Building 343, DK-2800 Kgs, Lyngby, Denmark"
],
"type": "Organization"
},
"familyName": "Semenova",
"givenName": "Elizaveta S.",
"id": "sg:person.010767406335.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010767406335.85"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Technical University of Denmark, Department of Photonics Engineering, \u00d8rsteds Plads, Building 343, DK-2800 Kgs, Lyngby, Denmark",
"id": "http://www.grid.ac/institutes/grid.5170.3",
"name": [
"Technical University of Denmark, Department of Photonics Engineering, \u00d8rsteds Plads, Building 343, DK-2800 Kgs, Lyngby, Denmark"
],
"type": "Organization"
},
"familyName": "Lavrinenko",
"givenName": "Andrei V.",
"id": "sg:person.0712171310.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712171310.27"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nature07540",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030170002",
"https://doi.org/10.1038/nature07540"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature00899",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030770524",
"https://doi.org/10.1038/nature00899"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/lsa.2016.22",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052133837",
"https://doi.org/10.1038/lsa.2016.22"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nnano.2009.92",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030191927",
"https://doi.org/10.1038/nnano.2009.92"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/0-387-37825-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028255731",
"https://doi.org/10.1007/0-387-37825-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature07545",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047227278",
"https://doi.org/10.1038/nature07545"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1557/mrs2009.121",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1067969604",
"https://doi.org/10.1557/mrs2009.121"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-06-08",
"datePublishedReg": "2017-06-08",
"description": "Cantilever sensors are among the most important microelectromechanical systems (MEMS), which are usually actuated by electrostatic forces or piezoelectric elements. Although well-developed microfabrication technology has made silicon the prevailing material for MEMS, unique properties of other materials are overlooked in this context. Here we investigate optically induced forces exerted upon a semi-insulating InP waveguide suspended above a highly doped InP:Si substrate, in three different regimes: the epsilon-near-zero (ENZ), with excitation of surface plasmon polaritons (SPPs) and phonons excitation. An order of magnitude amplification of the force is observed when light is coupled to SPPs, and three orders of magnitude amplification is achieved in the phonon excitation regime. In the ENZ regime, the force is found to be repulsive and higher than that in a waveguide suspended above a dielectric substrate. Low losses in InP:Si result in a big propagation length. The induced deflection can be detected by measuring the phase change of the light when passing through the waveguide, which enables all-optical functioning, and paves the way towards integration and miniaturization of micro-cantilevers. In addition, tunability of the ENZ and the SPP excitation wavelength ranges, via adjusting the carrier concentration, provides an extra degree of freedom for designing MEMS devices.",
"genre": "article",
"id": "sg:pub.10.1038/s41598-017-03409-1",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1045337",
"issn": [
"2045-2322"
],
"name": "Scientific Reports",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "7"
}
],
"keywords": [
"surface plasmon polaritons",
"microelectromechanical systems",
"InP-based waveguides",
"optical forces",
"InP waveguide",
"ENZ regime",
"excitation regime",
"plasmon polaritons",
"phonon excitations",
"magnitude amplification",
"propagation length",
"excitation wavelength",
"waveguide",
"Si substrate",
"carrier concentration",
"piezoelectric elements",
"MEMS devices",
"low loss",
"microfabrication technology",
"induced deflection",
"cantilever sensor",
"dielectric substrate",
"induced forces",
"electrostatic forces",
"excitation",
"different regimes",
"InP",
"unique properties",
"phase change",
"extra degree",
"regime",
"polaritons",
"light",
"tunability",
"wavelength",
"force",
"silicon",
"substrate",
"materials",
"Si",
"ENZ",
"miniaturization",
"deflection",
"sensors",
"amplification",
"devices",
"technology",
"properties",
"order",
"epsilon",
"freedom",
"system",
"integration",
"elements",
"length",
"addition",
"concentration",
"loss",
"degree",
"way",
"changes",
"context",
"functioning"
],
"name": "Enhancing Optical Forces in InP-Based Waveguides",
"pagination": "3106",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1085846317"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41598-017-03409-1"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"28596522"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41598-017-03409-1",
"https://app.dimensions.ai/details/publication/pub.1085846317"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:33",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_741.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/s41598-017-03409-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-03409-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-03409-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-03409-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-03409-1'
This table displays all metadata directly associated to this object as RDF triples.
166 TRIPLES
22 PREDICATES
96 URIs
81 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1038/s41598-017-03409-1 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | Na0a53cffcca249c992b14345e9854844 |
4 | ″ | schema:citation | sg:pub.10.1007/0-387-37825-1 |
5 | ″ | ″ | sg:pub.10.1038/lsa.2016.22 |
6 | ″ | ″ | sg:pub.10.1038/nature00899 |
7 | ″ | ″ | sg:pub.10.1038/nature07540 |
8 | ″ | ″ | sg:pub.10.1038/nature07545 |
9 | ″ | ″ | sg:pub.10.1038/nnano.2009.92 |
10 | ″ | ″ | sg:pub.10.1557/mrs2009.121 |
11 | ″ | schema:datePublished | 2017-06-08 |
12 | ″ | schema:datePublishedReg | 2017-06-08 |
13 | ″ | schema:description | Cantilever sensors are among the most important microelectromechanical systems (MEMS), which are usually actuated by electrostatic forces or piezoelectric elements. Although well-developed microfabrication technology has made silicon the prevailing material for MEMS, unique properties of other materials are overlooked in this context. Here we investigate optically induced forces exerted upon a semi-insulating InP waveguide suspended above a highly doped InP:Si substrate, in three different regimes: the epsilon-near-zero (ENZ), with excitation of surface plasmon polaritons (SPPs) and phonons excitation. An order of magnitude amplification of the force is observed when light is coupled to SPPs, and three orders of magnitude amplification is achieved in the phonon excitation regime. In the ENZ regime, the force is found to be repulsive and higher than that in a waveguide suspended above a dielectric substrate. Low losses in InP:Si result in a big propagation length. The induced deflection can be detected by measuring the phase change of the light when passing through the waveguide, which enables all-optical functioning, and paves the way towards integration and miniaturization of micro-cantilevers. In addition, tunability of the ENZ and the SPP excitation wavelength ranges, via adjusting the carrier concentration, provides an extra degree of freedom for designing MEMS devices. |
14 | ″ | schema:genre | article |
15 | ″ | schema:inLanguage | en |
16 | ″ | schema:isAccessibleForFree | true |
17 | ″ | schema:isPartOf | N2dc5c6aed9bf4526af39a69d6de16471 |
18 | ″ | ″ | Ncf7ebef96cd642148d295802fd8ad1d1 |
19 | ″ | ″ | sg:journal.1045337 |
20 | ″ | schema:keywords | ENZ |
21 | ″ | ″ | ENZ regime |
22 | ″ | ″ | InP |
23 | ″ | ″ | InP waveguide |
24 | ″ | ″ | InP-based waveguides |
25 | ″ | ″ | MEMS devices |
26 | ″ | ″ | Si |
27 | ″ | ″ | Si substrate |
28 | ″ | ″ | addition |
29 | ″ | ″ | amplification |
30 | ″ | ″ | cantilever sensor |
31 | ″ | ″ | carrier concentration |
32 | ″ | ″ | changes |
33 | ″ | ″ | concentration |
34 | ″ | ″ | context |
35 | ″ | ″ | deflection |
36 | ″ | ″ | degree |
37 | ″ | ″ | devices |
38 | ″ | ″ | dielectric substrate |
39 | ″ | ″ | different regimes |
40 | ″ | ″ | electrostatic forces |
41 | ″ | ″ | elements |
42 | ″ | ″ | epsilon |
43 | ″ | ″ | excitation |
44 | ″ | ″ | excitation regime |
45 | ″ | ″ | excitation wavelength |
46 | ″ | ″ | extra degree |
47 | ″ | ″ | force |
48 | ″ | ″ | freedom |
49 | ″ | ″ | functioning |
50 | ″ | ″ | induced deflection |
51 | ″ | ″ | induced forces |
52 | ″ | ″ | integration |
53 | ″ | ″ | length |
54 | ″ | ″ | light |
55 | ″ | ″ | loss |
56 | ″ | ″ | low loss |
57 | ″ | ″ | magnitude amplification |
58 | ″ | ″ | materials |
59 | ″ | ″ | microelectromechanical systems |
60 | ″ | ″ | microfabrication technology |
61 | ″ | ″ | miniaturization |
62 | ″ | ″ | optical forces |
63 | ″ | ″ | order |
64 | ″ | ″ | phase change |
65 | ″ | ″ | phonon excitations |
66 | ″ | ″ | piezoelectric elements |
67 | ″ | ″ | plasmon polaritons |
68 | ″ | ″ | polaritons |
69 | ″ | ″ | propagation length |
70 | ″ | ″ | properties |
71 | ″ | ″ | regime |
72 | ″ | ″ | sensors |
73 | ″ | ″ | silicon |
74 | ″ | ″ | substrate |
75 | ″ | ″ | surface plasmon polaritons |
76 | ″ | ″ | system |
77 | ″ | ″ | technology |
78 | ″ | ″ | tunability |
79 | ″ | ″ | unique properties |
80 | ″ | ″ | waveguide |
81 | ″ | ″ | wavelength |
82 | ″ | ″ | way |
83 | ″ | schema:name | Enhancing Optical Forces in InP-Based Waveguides |
84 | ″ | schema:pagination | 3106 |
85 | ″ | schema:productId | N4a048718d5544be09f149cf1ae72e1eb |
86 | ″ | ″ | N5d3d8c079c07414eac7ca6fade9a619a |
87 | ″ | ″ | Nf0ddd50d222946af96563fe602a9cde0 |
88 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1085846317 |
89 | ″ | ″ | https://doi.org/10.1038/s41598-017-03409-1 |
90 | ″ | schema:sdDatePublished | 2022-05-20T07:33 |
91 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
92 | ″ | schema:sdPublisher | N869ef05402c34b42b10df8fd239d98d6 |
93 | ″ | schema:url | https://doi.org/10.1038/s41598-017-03409-1 |
94 | ″ | sgo:license | sg:explorer/license/ |
95 | ″ | sgo:sdDataset | articles |
96 | ″ | rdf:type | schema:ScholarlyArticle |
97 | N2dc5c6aed9bf4526af39a69d6de16471 | schema:issueNumber | 1 |
98 | ″ | rdf:type | schema:PublicationIssue |
99 | N4a048718d5544be09f149cf1ae72e1eb | schema:name | dimensions_id |
100 | ″ | schema:value | pub.1085846317 |
101 | ″ | rdf:type | schema:PropertyValue |
102 | N5d3d8c079c07414eac7ca6fade9a619a | schema:name | doi |
103 | ″ | schema:value | 10.1038/s41598-017-03409-1 |
104 | ″ | rdf:type | schema:PropertyValue |
105 | N869ef05402c34b42b10df8fd239d98d6 | schema:name | Springer Nature - SN SciGraph project |
106 | ″ | rdf:type | schema:Organization |
107 | Na0a53cffcca249c992b14345e9854844 | rdf:first | sg:person.012142050667.41 |
108 | ″ | rdf:rest | Nf773d4245c6b4729ae1a1a2ec3961435 |
109 | Nb358b678dd6346c9a829479edc80c0e5 | rdf:first | sg:person.0712171310.27 |
110 | ″ | rdf:rest | rdf:nil |
111 | Ncf7ebef96cd642148d295802fd8ad1d1 | schema:volumeNumber | 7 |
112 | ″ | rdf:type | schema:PublicationVolume |
113 | Nf0ddd50d222946af96563fe602a9cde0 | schema:name | pubmed_id |
114 | ″ | schema:value | 28596522 |
115 | ″ | rdf:type | schema:PropertyValue |
116 | Nf773d4245c6b4729ae1a1a2ec3961435 | rdf:first | sg:person.010767406335.85 |
117 | ″ | rdf:rest | Nb358b678dd6346c9a829479edc80c0e5 |
118 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
119 | ″ | schema:name | Engineering |
120 | ″ | rdf:type | schema:DefinedTerm |
121 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Materials Engineering |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | sg:journal.1045337 | schema:issn | 2045-2322 |
125 | ″ | schema:name | Scientific Reports |
126 | ″ | schema:publisher | Springer Nature |
127 | ″ | rdf:type | schema:Periodical |
128 | sg:person.010767406335.85 | schema:affiliation | grid-institutes:grid.5170.3 |
129 | ″ | schema:familyName | Semenova |
130 | ″ | schema:givenName | Elizaveta S. |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010767406335.85 |
132 | ″ | rdf:type | schema:Person |
133 | sg:person.012142050667.41 | schema:affiliation | grid-institutes:grid.5170.3 |
134 | ″ | schema:familyName | Aryaee Panah |
135 | ″ | schema:givenName | Mohammad Esmail |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012142050667.41 |
137 | ″ | rdf:type | schema:Person |
138 | sg:person.0712171310.27 | schema:affiliation | grid-institutes:grid.5170.3 |
139 | ″ | schema:familyName | Lavrinenko |
140 | ″ | schema:givenName | Andrei V. |
141 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712171310.27 |
142 | ″ | rdf:type | schema:Person |
143 | sg:pub.10.1007/0-387-37825-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028255731 |
144 | ″ | ″ | https://doi.org/10.1007/0-387-37825-1 |
145 | ″ | rdf:type | schema:CreativeWork |
146 | sg:pub.10.1038/lsa.2016.22 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1052133837 |
147 | ″ | ″ | https://doi.org/10.1038/lsa.2016.22 |
148 | ″ | rdf:type | schema:CreativeWork |
149 | sg:pub.10.1038/nature00899 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030770524 |
150 | ″ | ″ | https://doi.org/10.1038/nature00899 |
151 | ″ | rdf:type | schema:CreativeWork |
152 | sg:pub.10.1038/nature07540 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030170002 |
153 | ″ | ″ | https://doi.org/10.1038/nature07540 |
154 | ″ | rdf:type | schema:CreativeWork |
155 | sg:pub.10.1038/nature07545 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1047227278 |
156 | ″ | ″ | https://doi.org/10.1038/nature07545 |
157 | ″ | rdf:type | schema:CreativeWork |
158 | sg:pub.10.1038/nnano.2009.92 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030191927 |
159 | ″ | ″ | https://doi.org/10.1038/nnano.2009.92 |
160 | ″ | rdf:type | schema:CreativeWork |
161 | sg:pub.10.1557/mrs2009.121 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1067969604 |
162 | ″ | ″ | https://doi.org/10.1557/mrs2009.121 |
163 | ″ | rdf:type | schema:CreativeWork |
164 | grid-institutes:grid.5170.3 | schema:alternateName | Technical University of Denmark, Department of Photonics Engineering, Ørsteds Plads, Building 343, DK-2800 Kgs, Lyngby, Denmark |
165 | ″ | schema:name | Technical University of Denmark, Department of Photonics Engineering, Ørsteds Plads, Building 343, DK-2800 Kgs, Lyngby, Denmark |
166 | ″ | rdf:type | schema:Organization |