A microfluidic chamber-based approach to map the shear moduli of vascular cells and other soft materials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Béla Suki, Yingying Hu, Naohiko Murata, Jasmin Imsirovic, Jarred R. Mondoñedo, Claudio L. N. de Oliveira, Niccole Schaible, Philip G. Allen, Ramaswamy Krishnan, Erzsébet Bartolák-Suki

ABSTRACT

There is growing interest in quantifying vascular cell and tissue stiffness. Most measurement approaches, however, are incapable of assessing stiffness in the presence of physiological flows. We developed a microfluidic approach which allows measurement of shear modulus (G) during flow. The design included a chamber with glass windows allowing imaging with upright or inverted microscopes. Flow was controlled gravitationally to push culture media through the chamber. Fluorescent beads were conjugated to the sample surface and imaged before and during flow. Bead displacements were calculated from images and G was computed as the ratio of imposed shear stress to measured shear strain. Fluid-structure simulations showed that shear stress on the surface did not depend on sample stiffness. Our approach was verified by measuring the moduli of polyacrylamide gels of known stiffness. In human pulmonary microvascular endothelial cells, G was 20.4 ± 12 Pa and decreased by 20% and 22% with increasing shear stress and inhibition of non-muscle myosin II motors, respectively. The G showed a larger intra- than inter-cellular variability and it was mostly determined by the cytosol. Our shear modulus microscopy can thus map the spatial distribution of G of soft materials including gels, cells and tissues while allowing the visualization of microscopic structures such as the cytoskeleleton. More... »

PAGES

2305

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-02659-3

DOI

http://dx.doi.org/10.1038/s41598-017-02659-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085530571

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28536424


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biomedical Engineering, Boston University, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suki", 
        "givenName": "B\u00e9la", 
        "id": "sg:person.0730323706.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730323706.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biomedical Engineering, Boston University, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Yingying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biomedical Engineering, Boston University, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murata", 
        "givenName": "Naohiko", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biomedical Engineering, Boston University, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Imsirovic", 
        "givenName": "Jasmin", 
        "id": "sg:person.0720042314.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720042314.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biomedical Engineering, Boston University, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mondo\u00f1edo", 
        "givenName": "Jarred R.", 
        "id": "sg:person.01016003561.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016003561.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biomedical Engineering, Boston University, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Oliveira", 
        "givenName": "Claudio L. N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schaible", 
        "givenName": "Niccole", 
        "id": "sg:person.0604473677.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604473677.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biomedical Engineering, Boston University, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Allen", 
        "givenName": "Philip G.", 
        "id": "sg:person.0610354135.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610354135.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krishnan", 
        "givenName": "Ramaswamy", 
        "id": "sg:person.0603715100.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603715100.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biomedical Engineering, Boston University, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bartol\u00e1k-Suki", 
        "givenName": "Erzs\u00e9bet", 
        "id": "sg:person.010506062527.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010506062527.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1529/biophysj.103.037044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001185078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2257-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004033110", 
          "https://doi.org/10.1007/978-1-4757-2257-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2257-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004033110", 
          "https://doi.org/10.1007/978-1-4757-2257-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2015.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006082238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.00193.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006950709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(01)76145-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007155743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.106.091264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007463836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2014.06.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011174037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2014.06.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011174037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.00037.2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013220722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0126214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016868388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.hyp.0000164580.39991.3d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018822496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.hyp.0000164580.39991.3d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018822496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2010.02.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020760573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2696-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021837631", 
          "https://doi.org/10.1007/978-1-4757-2696-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2696-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021837631", 
          "https://doi.org/10.1007/978-1-4757-2696-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2010.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023494984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/japplphysiol.00958.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025372407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1165/rcmb.2005-0453oc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025942483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajplung.00299.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026657999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2008.05.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027856941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.00417.2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028208703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/japplphysiol.00595.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028736872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0005486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029019755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms12814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030237062", 
          "https://doi.org/10.1038/ncomms12814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.110.221846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033971984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.110.221846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033971984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2013.05.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036977536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2013.05.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036977536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.113.01744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037572200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.113.01744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037572200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2005.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038845984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2005.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038845984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3791/2911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040698299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.00270.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041939048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmr.953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043012740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.107.107144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045153186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl103943u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045785366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl103943u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045785366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/2012.jama.10503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045929857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/o95-041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051154078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052785028", 
          "https://doi.org/10.1038/nmat4358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.148102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.148102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7684161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062648395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.2000.279.1.c188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074669215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.1998.274.5.c1283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083272051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.1998.274.5.c1283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083272051"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "There is growing interest in quantifying vascular cell and tissue stiffness. Most measurement approaches, however, are incapable of assessing stiffness in the presence of physiological flows. We developed a microfluidic approach which allows measurement of shear modulus (G) during flow. The design included a chamber with glass windows allowing imaging with upright or inverted microscopes. Flow was controlled gravitationally to push culture media through the chamber. Fluorescent beads were conjugated to the sample surface and imaged before and during flow. Bead displacements were calculated from images and G was computed as the ratio of imposed shear stress to measured shear strain. Fluid-structure simulations showed that shear stress on the surface did not depend on sample stiffness. Our approach was verified by measuring the moduli of polyacrylamide gels of known stiffness. In human\u00a0pulmonary microvascular endothelial cells, G was 20.4\u2009\u00b1\u200912\u2009Pa and decreased by 20% and 22% with increasing shear stress and inhibition of non-muscle myosin II motors, respectively. The G showed a larger intra- than inter-cellular variability and it was mostly determined by the cytosol. Our shear modulus microscopy can thus map the spatial distribution of G of soft materials including gels, cells and tissues while allowing the visualization of microscopic structures such as the cytoskeleleton.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-02659-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4177092", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5504115", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "A microfluidic chamber-based approach to map the shear moduli of vascular cells and other soft materials", 
    "pagination": "2305", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "145f845413f5e681bcf5d1e23907fcbb457c15a2c1e22431abd64bfb47419b7f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28536424"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-02659-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085530571"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-02659-3", 
      "https://app.dimensions.ai/details/publication/pub.1085530571"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000492.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-02659-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-02659-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-02659-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-02659-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-02659-3'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      66 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-02659-3 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N917c7de3b8c248b1989edcb93a714091
4 schema:citation sg:pub.10.1007/978-1-4757-2257-4
5 sg:pub.10.1007/978-1-4757-2696-1
6 sg:pub.10.1038/ncomms12814
7 sg:pub.10.1038/nmat4358
8 https://doi.org/10.1001/2012.jama.10503
9 https://doi.org/10.1002/jmr.953
10 https://doi.org/10.1016/j.bbrc.2010.02.115
11 https://doi.org/10.1016/j.bpj.2013.05.057
12 https://doi.org/10.1016/j.ccr.2005.08.010
13 https://doi.org/10.1016/j.cell.2014.06.051
14 https://doi.org/10.1016/j.jbiomech.2008.05.033
15 https://doi.org/10.1016/j.jbiomech.2010.01.021
16 https://doi.org/10.1016/j.ultrasmedbio.2015.08.012
17 https://doi.org/10.1016/s0006-3495(01)76145-0
18 https://doi.org/10.1021/nl103943u
19 https://doi.org/10.1103/physrevlett.87.148102
20 https://doi.org/10.1126/science.7684161
21 https://doi.org/10.1139/o95-041
22 https://doi.org/10.1152/ajpcell.00037.2016
23 https://doi.org/10.1152/ajpcell.00193.2007
24 https://doi.org/10.1152/ajpcell.00270.2001
25 https://doi.org/10.1152/ajpcell.00417.2009
26 https://doi.org/10.1152/ajpcell.1998.274.5.c1283
27 https://doi.org/10.1152/ajpcell.2000.279.1.c188
28 https://doi.org/10.1152/ajplung.00299.2005
29 https://doi.org/10.1152/japplphysiol.00595.2003
30 https://doi.org/10.1152/japplphysiol.00958.2007
31 https://doi.org/10.1161/01.hyp.0000164580.39991.3d
32 https://doi.org/10.1161/circresaha.110.221846
33 https://doi.org/10.1161/hypertensionaha.113.01744
34 https://doi.org/10.1165/rcmb.2005-0453oc
35 https://doi.org/10.1371/journal.pone.0005486
36 https://doi.org/10.1371/journal.pone.0126214
37 https://doi.org/10.1529/biophysj.103.037044
38 https://doi.org/10.1529/biophysj.106.091264
39 https://doi.org/10.1529/biophysj.107.107144
40 https://doi.org/10.3791/2911
41 schema:datePublished 2017-12
42 schema:datePublishedReg 2017-12-01
43 schema:description There is growing interest in quantifying vascular cell and tissue stiffness. Most measurement approaches, however, are incapable of assessing stiffness in the presence of physiological flows. We developed a microfluidic approach which allows measurement of shear modulus (G) during flow. The design included a chamber with glass windows allowing imaging with upright or inverted microscopes. Flow was controlled gravitationally to push culture media through the chamber. Fluorescent beads were conjugated to the sample surface and imaged before and during flow. Bead displacements were calculated from images and G was computed as the ratio of imposed shear stress to measured shear strain. Fluid-structure simulations showed that shear stress on the surface did not depend on sample stiffness. Our approach was verified by measuring the moduli of polyacrylamide gels of known stiffness. In human pulmonary microvascular endothelial cells, G was 20.4 ± 12 Pa and decreased by 20% and 22% with increasing shear stress and inhibition of non-muscle myosin II motors, respectively. The G showed a larger intra- than inter-cellular variability and it was mostly determined by the cytosol. Our shear modulus microscopy can thus map the spatial distribution of G of soft materials including gels, cells and tissues while allowing the visualization of microscopic structures such as the cytoskeleleton.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N76c91d4f003848fa94182599c9548acf
48 Ne1927ad428cb4a0c850a82b40ad3ea5a
49 sg:journal.1045337
50 schema:name A microfluidic chamber-based approach to map the shear moduli of vascular cells and other soft materials
51 schema:pagination 2305
52 schema:productId N116124bf59364e82bd1b2d90d9a2076f
53 N1fdc01dbb6634e0099c72273f9fed380
54 N437239b642fa4aa79f15281280e9b4e7
55 Nd1ef9e2dff9348debea58bce62b2f53f
56 Nf8659585879d44cbb7531ab996d42726
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085530571
58 https://doi.org/10.1038/s41598-017-02659-3
59 schema:sdDatePublished 2019-04-10T19:53
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Ne034ce7fd8534df3b51fb68519f08ff6
62 schema:url https://www.nature.com/articles/s41598-017-02659-3
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N09a0fa082f20481093e943c8d24195c9 rdf:first sg:person.0604473677.24
67 rdf:rest Nafb08fba680c40a18d34c6b0636c46ed
68 N116124bf59364e82bd1b2d90d9a2076f schema:name nlm_unique_id
69 schema:value 101563288
70 rdf:type schema:PropertyValue
71 N1fdc01dbb6634e0099c72273f9fed380 schema:name pubmed_id
72 schema:value 28536424
73 rdf:type schema:PropertyValue
74 N2ba9d14c54ef407793b9326f9c1dadd8 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
75 schema:familyName Murata
76 schema:givenName Naohiko
77 rdf:type schema:Person
78 N32e199c1e6a54233be04efbd3d096b13 rdf:first N2ba9d14c54ef407793b9326f9c1dadd8
79 rdf:rest N9bb41202a9b74a438241b57779c4d3c6
80 N437239b642fa4aa79f15281280e9b4e7 schema:name dimensions_id
81 schema:value pub.1085530571
82 rdf:type schema:PropertyValue
83 N71b61be8fd8a463389d4d472720b33d0 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
84 schema:familyName Hu
85 schema:givenName Yingying
86 rdf:type schema:Person
87 N76c91d4f003848fa94182599c9548acf schema:volumeNumber 7
88 rdf:type schema:PublicationVolume
89 N7bdb84a994b14fa892abf3834c6ad0af rdf:first sg:person.0603715100.06
90 rdf:rest Nd56dbe4193c540b5920205e2cc397911
91 N917c7de3b8c248b1989edcb93a714091 rdf:first sg:person.0730323706.34
92 rdf:rest Na2d62aeeb87e4e218f11bd10da0e840b
93 N930225cc77fd46448293f2345e35449c rdf:first N9d73fc710aa940fb971c9abb53171086
94 rdf:rest N09a0fa082f20481093e943c8d24195c9
95 N9bb41202a9b74a438241b57779c4d3c6 rdf:first sg:person.0720042314.49
96 rdf:rest Nc091ba20effa48d3a5f6a4bfa36873ae
97 N9d73fc710aa940fb971c9abb53171086 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
98 schema:familyName de Oliveira
99 schema:givenName Claudio L. N.
100 rdf:type schema:Person
101 Na2d62aeeb87e4e218f11bd10da0e840b rdf:first N71b61be8fd8a463389d4d472720b33d0
102 rdf:rest N32e199c1e6a54233be04efbd3d096b13
103 Nafb08fba680c40a18d34c6b0636c46ed rdf:first sg:person.0610354135.24
104 rdf:rest N7bdb84a994b14fa892abf3834c6ad0af
105 Nc091ba20effa48d3a5f6a4bfa36873ae rdf:first sg:person.01016003561.20
106 rdf:rest N930225cc77fd46448293f2345e35449c
107 Nd1ef9e2dff9348debea58bce62b2f53f schema:name readcube_id
108 schema:value 145f845413f5e681bcf5d1e23907fcbb457c15a2c1e22431abd64bfb47419b7f
109 rdf:type schema:PropertyValue
110 Nd56dbe4193c540b5920205e2cc397911 rdf:first sg:person.010506062527.53
111 rdf:rest rdf:nil
112 Ne034ce7fd8534df3b51fb68519f08ff6 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Ne1927ad428cb4a0c850a82b40ad3ea5a schema:issueNumber 1
115 rdf:type schema:PublicationIssue
116 Nf8659585879d44cbb7531ab996d42726 schema:name doi
117 schema:value 10.1038/s41598-017-02659-3
118 rdf:type schema:PropertyValue
119 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
120 schema:name Physical Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
123 schema:name Other Physical Sciences
124 rdf:type schema:DefinedTerm
125 sg:grant.4177092 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-02659-3
126 rdf:type schema:MonetaryGrant
127 sg:grant.5504115 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-02659-3
128 rdf:type schema:MonetaryGrant
129 sg:journal.1045337 schema:issn 2045-2322
130 schema:name Scientific Reports
131 rdf:type schema:Periodical
132 sg:person.01016003561.20 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
133 schema:familyName Mondoñedo
134 schema:givenName Jarred R.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016003561.20
136 rdf:type schema:Person
137 sg:person.010506062527.53 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
138 schema:familyName Bartolák-Suki
139 schema:givenName Erzsébet
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010506062527.53
141 rdf:type schema:Person
142 sg:person.0603715100.06 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
143 schema:familyName Krishnan
144 schema:givenName Ramaswamy
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603715100.06
146 rdf:type schema:Person
147 sg:person.0604473677.24 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
148 schema:familyName Schaible
149 schema:givenName Niccole
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604473677.24
151 rdf:type schema:Person
152 sg:person.0610354135.24 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
153 schema:familyName Allen
154 schema:givenName Philip G.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610354135.24
156 rdf:type schema:Person
157 sg:person.0720042314.49 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
158 schema:familyName Imsirovic
159 schema:givenName Jasmin
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720042314.49
161 rdf:type schema:Person
162 sg:person.0730323706.34 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
163 schema:familyName Suki
164 schema:givenName Béla
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730323706.34
166 rdf:type schema:Person
167 sg:pub.10.1007/978-1-4757-2257-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004033110
168 https://doi.org/10.1007/978-1-4757-2257-4
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/978-1-4757-2696-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021837631
171 https://doi.org/10.1007/978-1-4757-2696-1
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/ncomms12814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030237062
174 https://doi.org/10.1038/ncomms12814
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nmat4358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052785028
177 https://doi.org/10.1038/nmat4358
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1001/2012.jama.10503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045929857
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/jmr.953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043012740
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.bbrc.2010.02.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020760573
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.bpj.2013.05.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036977536
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.ccr.2005.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038845984
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.cell.2014.06.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011174037
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.jbiomech.2008.05.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027856941
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.jbiomech.2010.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023494984
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.ultrasmedbio.2015.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006082238
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/s0006-3495(01)76145-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007155743
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/nl103943u schema:sameAs https://app.dimensions.ai/details/publication/pub.1045785366
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.87.148102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060823785
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1126/science.7684161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062648395
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1139/o95-041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051154078
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1152/ajpcell.00037.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013220722
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1152/ajpcell.00193.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006950709
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1152/ajpcell.00270.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041939048
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1152/ajpcell.00417.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028208703
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1152/ajpcell.1998.274.5.c1283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083272051
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1152/ajpcell.2000.279.1.c188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074669215
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1152/ajplung.00299.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026657999
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1152/japplphysiol.00595.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028736872
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1152/japplphysiol.00958.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025372407
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1161/01.hyp.0000164580.39991.3d schema:sameAs https://app.dimensions.ai/details/publication/pub.1018822496
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1161/circresaha.110.221846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033971984
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1161/hypertensionaha.113.01744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037572200
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1165/rcmb.2005-0453oc schema:sameAs https://app.dimensions.ai/details/publication/pub.1025942483
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1371/journal.pone.0005486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029019755
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1371/journal.pone.0126214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016868388
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1529/biophysj.103.037044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001185078
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1529/biophysj.106.091264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007463836
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1529/biophysj.107.107144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045153186
242 rdf:type schema:CreativeWork
243 https://doi.org/10.3791/2911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040698299
244 rdf:type schema:CreativeWork
245 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
246 schema:name Department of Biomedical Engineering, Boston University, 02215, Boston, MA, USA
247 rdf:type schema:Organization
248 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
249 schema:name Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215, Boston, MA, USA
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...