Associations between radiologist-defined semantic and automatically computed radiomic features in non-small cell lung cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Stephen S. F. Yip, Ying Liu, Chintan Parmar, Qian Li, Shichang Liu, Fangyuan Qu, Zhaoxiang Ye, Robert J. Gillies, Hugo J. W. L. Aerts

ABSTRACT

Tumor phenotypes captured in computed tomography (CT) images can be described qualitatively and quantitatively using radiologist-defined "semantic" and computer-derived "radiomic" features, respectively. While both types of features have shown to be promising predictors of prognosis, the association between these groups of features remains unclear. We investigated the associations between semantic and radiomic features in CT images of 258 non-small cell lung adenocarcinomas. The tumor imaging phenotypes were described using 9 qualitative semantic features that were scored by radiologists, and 57 quantitative radiomic features that were automatically calculated using mathematical algorithms. Of the 9 semantic features, 3 were rated on a binary scale (cavitation, air bronchogram, and calcification) and 6 were rated on a categorical scale (texture, border definition, contour, lobulation, spiculation, and concavity). 32-41 radiomic features were associated with the binary semantic features (AUC = 0.56-0.76). The relationship between all radiomic features and the categorical semantic features ranged from weak to moderate (|Spearmen's correlation| = 0.002-0.65). There are associations between semantic and radiomic features, however the associations were not strong despite being significant. Our results indicate that radiomic features may capture distinct tumor phenotypes that fail to be perceived by naked eye that semantic features do not describe and vice versa. More... »

PAGES

3519

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-02425-5

DOI

http://dx.doi.org/10.1038/s41598-017-02425-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085943250

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28615677


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women\u2019s Hospital, and Harvard Medical School, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yip", 
        "givenName": "Stephen S. F.", 
        "id": "sg:person.01036521247.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036521247.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin Medical University Cancer Institute and Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411918.4", 
          "name": [
            "Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin\u2019s Clinical Research Center for Cancer, Tianjin, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Ying", 
        "id": "sg:person.01324730712.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324730712.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women\u2019s Hospital, and Harvard Medical School, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parmar", 
        "givenName": "Chintan", 
        "id": "sg:person.01305232705.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305232705.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin Medical University Cancer Institute and Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411918.4", 
          "name": [
            "Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin\u2019s Clinical Research Center for Cancer, Tianjin, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Qian", 
        "id": "sg:person.010203103631.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010203103631.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin Medical University Cancer Institute and Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411918.4", 
          "name": [
            "Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin\u2019s Clinical Research Center for Cancer, Tianjin, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Shichang", 
        "id": "sg:person.010741275221.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010741275221.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin Medical University Cancer Institute and Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411918.4", 
          "name": [
            "Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin\u2019s Clinical Research Center for Cancer, Tianjin, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qu", 
        "givenName": "Fangyuan", 
        "id": "sg:person.01145375525.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145375525.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin Medical University Cancer Institute and Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411918.4", 
          "name": [
            "Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin\u2019s Clinical Research Center for Cancer, Tianjin, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Zhaoxiang", 
        "id": "sg:person.01304455100.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304455100.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moffitt Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.468198.a", 
          "name": [
            "Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA", 
            "Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gillies", 
        "givenName": "Robert J.", 
        "id": "sg:person.014224135057.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224135057.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brigham and Women's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women\u2019s Hospital, and Harvard Medical School, 02115, Boston, MA, USA", 
            "Department of Radiology, Brigham and Women\u2019s Hospital and Harvard Medical School, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aerts", 
        "givenName": "Hugo J. W. L.", 
        "id": "sg:person.01167447307.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167447307.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiol.13112553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002632069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181d275b6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003501014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181d275b6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003501014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181d275b6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003501014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181d275b6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003501014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2015.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004503812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2015.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004503812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2016.08.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004585123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2016.08.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004585123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2011/361589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005187391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.12-2351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005586124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/md.0000000000001753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006536664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/md.0000000000001753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006536664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cam4.172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008165234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009469125", 
          "https://doi.org/10.1038/ncomms5006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.112.107375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012629075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13120949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012912111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.21262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013257560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cllc.2015.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013316059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016151829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014314609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2012.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014797896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2012.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014797896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2371041650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016375126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018457673", 
          "https://doi.org/10.1186/gb-2004-5-10-r80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cllc.2016.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019214561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cllc.2016.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019214561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1440-1843.2006.01012.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019816393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2012.09.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020384267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11110264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020669084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2015151169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023809829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40336-014-0064-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024623895", 
          "https://doi.org/10.1007/s40336-014-0064-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cllc.2015.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025120333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026461556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2004.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026664475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2391050343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026798687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep11044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026869470", 
          "https://doi.org/10.1038/srep11044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2013.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027355962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2016.05.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028826213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2007.08.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029745189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1183/09031936.00056612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030413676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/thx.28.3.354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030571954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/thx.28.3.354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030571954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rti.0b013e3181fbaa64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031975988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rti.0b013e3181fbaa64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031975988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep34921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032506380", 
          "https://doi.org/10.1038/srep34921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamaoncol.2016.2631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032988205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fonc.2016.00072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033930171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5002(01)00489-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033999391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-012-0196-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036528660", 
          "https://doi.org/10.1007/s13244-012-0196-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a2061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036982442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2203001701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037493640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1102/1470-7330.2013.0015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039340051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0956797613479386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042120437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0956797613479386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042120437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12120254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042743379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1197/j.aem.2005.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043242064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1197/j.aem.2005.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043242064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2003.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045145010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2003.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045145010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14122524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048317385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2016.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048962795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2012.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049617138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-016-3427-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050524814", 
          "https://doi.org/10.1007/s00259-016-3427-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-016-3427-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050524814", 
          "https://doi.org/10.1007/s00259-016-3427-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-012-2247-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051316850", 
          "https://doi.org/10.1007/s00259-012-2247-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icvts.2004.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054736156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/61/13/r150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059031442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.752194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061161992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/33150223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064569104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/138620709789383196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069174589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.149.6.1139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069314600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.183.2.1830283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069326259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.116.181826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070928644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.179.2.2014294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078047352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078724256", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3978/j.issn.2072-1439.2014.09.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078994964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3978/j.issn.2072-1439.2014.04.05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078994967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016151455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079236170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016151455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079236170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.200.2.8685321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082908409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083294187", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Tumor phenotypes captured in computed tomography (CT) images can be described qualitatively and quantitatively using radiologist-defined \"semantic\" and computer-derived \"radiomic\" features, respectively. While both types of features have shown to be promising predictors of prognosis, the association between these groups of features remains unclear. We investigated the associations between semantic and radiomic features in CT images of 258 non-small cell lung adenocarcinomas. The tumor imaging phenotypes were described using 9 qualitative semantic features that were scored by radiologists, and 57 quantitative radiomic features that were automatically calculated using mathematical algorithms. Of the 9 semantic features, 3 were rated on a binary scale (cavitation, air bronchogram, and calcification) and 6 were rated on a categorical scale (texture, border definition, contour, lobulation, spiculation, and concavity). 32-41 radiomic features were associated with the binary semantic features (AUC\u2009=\u20090.56-0.76). The relationship between all radiomic features and the categorical semantic features ranged from weak to moderate (|Spearmen's correlation|\u2009=\u20090.002-0.65). There are associations between semantic and radiomic features, however the associations were not strong despite being significant. Our results indicate that radiomic features may capture distinct tumor phenotypes that fail to be perceived by naked eye that semantic features do not describe and vice versa.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-02425-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3860015", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3933880", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2689152", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Associations between radiologist-defined semantic and automatically computed radiomic features in non-small cell lung cancer", 
    "pagination": "3519", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6190c93b65701068c13e68cfa45f8caaab178a652d3257a300c7823373381f10"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28615677"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-02425-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085943250"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-02425-5", 
      "https://app.dimensions.ai/details/publication/pub.1085943250"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000600.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-02425-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-02425-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-02425-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-02425-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-02425-5'


 

This table displays all metadata directly associated to this object as RDF triples.

346 TRIPLES      21 PREDICATES      95 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-02425-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc2872f4ed6e74b9396a9dc346e68867a
4 schema:citation sg:pub.10.1007/s00259-012-2247-0
5 sg:pub.10.1007/s00259-016-3427-0
6 sg:pub.10.1007/s13244-012-0196-6
7 sg:pub.10.1007/s40336-014-0064-0
8 sg:pub.10.1038/ncomms5006
9 sg:pub.10.1038/srep11044
10 sg:pub.10.1038/srep34921
11 sg:pub.10.1186/gb-2004-5-10-r80
12 https://app.dimensions.ai/details/publication/pub.1078724256
13 https://app.dimensions.ai/details/publication/pub.1083294187
14 https://doi.org/10.1001/jamaoncol.2016.2631
15 https://doi.org/10.1002/cam4.172
16 https://doi.org/10.1002/jmri.21617
17 https://doi.org/10.1016/j.cllc.2015.05.007
18 https://doi.org/10.1016/j.cllc.2015.11.002
19 https://doi.org/10.1016/j.cllc.2016.02.001
20 https://doi.org/10.1016/j.cmpb.2013.08.004
21 https://doi.org/10.1016/j.crad.2004.07.008
22 https://doi.org/10.1016/j.crad.2012.09.002
23 https://doi.org/10.1016/j.ejrad.2007.08.027
24 https://doi.org/10.1016/j.ejrad.2016.08.023
25 https://doi.org/10.1016/j.icvts.2004.01.008
26 https://doi.org/10.1016/j.lungcan.2003.07.001
27 https://doi.org/10.1016/j.patcog.2012.10.005
28 https://doi.org/10.1016/j.radonc.2012.09.023
29 https://doi.org/10.1016/j.radonc.2015.02.015
30 https://doi.org/10.1016/j.radonc.2016.04.004
31 https://doi.org/10.1016/j.radonc.2016.05.024
32 https://doi.org/10.1016/s0169-5002(01)00489-5
33 https://doi.org/10.1088/0031-9155/61/13/r150
34 https://doi.org/10.1097/md.0000000000001753
35 https://doi.org/10.1097/rct.0b013e3181d275b6
36 https://doi.org/10.1097/rti.0b013e3181fbaa64
37 https://doi.org/10.1102/1470-7330.2013.0015
38 https://doi.org/10.1109/36.752194
39 https://doi.org/10.1111/j.1440-1843.2006.01012.x
40 https://doi.org/10.1136/thx.28.3.354
41 https://doi.org/10.1148/radiol.11110264
42 https://doi.org/10.1148/radiol.12120254
43 https://doi.org/10.1148/radiol.13112553
44 https://doi.org/10.1148/radiol.13120949
45 https://doi.org/10.1148/radiol.14122524
46 https://doi.org/10.1148/radiol.2015151169
47 https://doi.org/10.1148/radiol.2016151455
48 https://doi.org/10.1148/radiol.2016151829
49 https://doi.org/10.1148/radiol.2203001701
50 https://doi.org/10.1148/radiol.2371041650
51 https://doi.org/10.1148/radiol.2391050343
52 https://doi.org/10.1148/radiology.179.2.2014294
53 https://doi.org/10.1148/radiology.200.2.8685321
54 https://doi.org/10.1155/2011/361589
55 https://doi.org/10.1177/0956797613479386
56 https://doi.org/10.1183/09031936.00056612
57 https://doi.org/10.1197/j.aem.2005.02.014
58 https://doi.org/10.1259/bjr/33150223
59 https://doi.org/10.1378/chest.12-2351
60 https://doi.org/10.2174/138620709789383196
61 https://doi.org/10.2214/ajr.149.6.1139
62 https://doi.org/10.2214/ajr.183.2.1830283
63 https://doi.org/10.2967/jnumed.112.107375
64 https://doi.org/10.2967/jnumed.116.181826
65 https://doi.org/10.3174/ajnr.a2061
66 https://doi.org/10.3322/caac.21262
67 https://doi.org/10.3389/fonc.2016.00072
68 https://doi.org/10.3978/j.issn.2072-1439.2014.04.05
69 https://doi.org/10.3978/j.issn.2072-1439.2014.09.12
70 schema:datePublished 2017-12
71 schema:datePublishedReg 2017-12-01
72 schema:description Tumor phenotypes captured in computed tomography (CT) images can be described qualitatively and quantitatively using radiologist-defined "semantic" and computer-derived "radiomic" features, respectively. While both types of features have shown to be promising predictors of prognosis, the association between these groups of features remains unclear. We investigated the associations between semantic and radiomic features in CT images of 258 non-small cell lung adenocarcinomas. The tumor imaging phenotypes were described using 9 qualitative semantic features that were scored by radiologists, and 57 quantitative radiomic features that were automatically calculated using mathematical algorithms. Of the 9 semantic features, 3 were rated on a binary scale (cavitation, air bronchogram, and calcification) and 6 were rated on a categorical scale (texture, border definition, contour, lobulation, spiculation, and concavity). 32-41 radiomic features were associated with the binary semantic features (AUC = 0.56-0.76). The relationship between all radiomic features and the categorical semantic features ranged from weak to moderate (|Spearmen's correlation| = 0.002-0.65). There are associations between semantic and radiomic features, however the associations were not strong despite being significant. Our results indicate that radiomic features may capture distinct tumor phenotypes that fail to be perceived by naked eye that semantic features do not describe and vice versa.
73 schema:genre research_article
74 schema:inLanguage en
75 schema:isAccessibleForFree true
76 schema:isPartOf N620e6e2fd31943b9831b224d41a6d2e8
77 Nf92c904d9ed14a798bb186aaf3dd88ec
78 sg:journal.1045337
79 schema:name Associations between radiologist-defined semantic and automatically computed radiomic features in non-small cell lung cancer
80 schema:pagination 3519
81 schema:productId N694da78e87cf4e85b2d31772d02fab4b
82 N7b565591948e4db3b3de0c6921636986
83 N875448232caa4fe183f7fcbe7ea4573a
84 N9053ebdeebb64aed8482195d5b301e6e
85 Nd5625fc2496a4ec0bef7856992042e02
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085943250
87 https://doi.org/10.1038/s41598-017-02425-5
88 schema:sdDatePublished 2019-04-10T17:44
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher Nbbdaf04e180943e88896940aa1991ce6
91 schema:url https://www.nature.com/articles/s41598-017-02425-5
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N120a9b27a59b42b28ac169d5195e91cd rdf:first sg:person.010741275221.46
96 rdf:rest Nd1928e8cd9c6418ba25bc4b6aa525ff0
97 N2215cacba164482289de464e19dfa349 rdf:first sg:person.014224135057.83
98 rdf:rest N680e357cbe5c446d9a92568e382bfce4
99 N2b9adcdc4b7448e9ac9a30a31067d63c rdf:first sg:person.01305232705.30
100 rdf:rest N9958d46cbde24f43abb05dbfc500e264
101 N620e6e2fd31943b9831b224d41a6d2e8 schema:issueNumber 1
102 rdf:type schema:PublicationIssue
103 N680e357cbe5c446d9a92568e382bfce4 rdf:first sg:person.01167447307.02
104 rdf:rest rdf:nil
105 N694da78e87cf4e85b2d31772d02fab4b schema:name pubmed_id
106 schema:value 28615677
107 rdf:type schema:PropertyValue
108 N7b565591948e4db3b3de0c6921636986 schema:name nlm_unique_id
109 schema:value 101563288
110 rdf:type schema:PropertyValue
111 N875448232caa4fe183f7fcbe7ea4573a schema:name doi
112 schema:value 10.1038/s41598-017-02425-5
113 rdf:type schema:PropertyValue
114 N9053ebdeebb64aed8482195d5b301e6e schema:name dimensions_id
115 schema:value pub.1085943250
116 rdf:type schema:PropertyValue
117 N9958d46cbde24f43abb05dbfc500e264 rdf:first sg:person.010203103631.23
118 rdf:rest N120a9b27a59b42b28ac169d5195e91cd
119 Na27808fa658b402e83263041e93f02c8 rdf:first sg:person.01324730712.78
120 rdf:rest N2b9adcdc4b7448e9ac9a30a31067d63c
121 Nbbdaf04e180943e88896940aa1991ce6 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 Nc207075c7a1640c496ebe2328c00463a rdf:first sg:person.01304455100.49
124 rdf:rest N2215cacba164482289de464e19dfa349
125 Nc2872f4ed6e74b9396a9dc346e68867a rdf:first sg:person.01036521247.70
126 rdf:rest Na27808fa658b402e83263041e93f02c8
127 Nd1928e8cd9c6418ba25bc4b6aa525ff0 rdf:first sg:person.01145375525.14
128 rdf:rest Nc207075c7a1640c496ebe2328c00463a
129 Nd2bac04b09804eb5ae76c312a20443c4 schema:name Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, 02115, Boston, MA, USA
130 rdf:type schema:Organization
131 Nd5625fc2496a4ec0bef7856992042e02 schema:name readcube_id
132 schema:value 6190c93b65701068c13e68cfa45f8caaab178a652d3257a300c7823373381f10
133 rdf:type schema:PropertyValue
134 Nf92c904d9ed14a798bb186aaf3dd88ec schema:volumeNumber 7
135 rdf:type schema:PublicationVolume
136 Nfd98e168f7334fcb9da0a3fe246c0c75 schema:name Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, 02115, Boston, MA, USA
137 rdf:type schema:Organization
138 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
139 schema:name Information and Computing Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
142 schema:name Artificial Intelligence and Image Processing
143 rdf:type schema:DefinedTerm
144 sg:grant.2689152 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-02425-5
145 rdf:type schema:MonetaryGrant
146 sg:grant.3860015 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-02425-5
147 rdf:type schema:MonetaryGrant
148 sg:grant.3933880 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-02425-5
149 rdf:type schema:MonetaryGrant
150 sg:journal.1045337 schema:issn 2045-2322
151 schema:name Scientific Reports
152 rdf:type schema:Periodical
153 sg:person.010203103631.23 schema:affiliation https://www.grid.ac/institutes/grid.411918.4
154 schema:familyName Li
155 schema:givenName Qian
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010203103631.23
157 rdf:type schema:Person
158 sg:person.01036521247.70 schema:affiliation Nd2bac04b09804eb5ae76c312a20443c4
159 schema:familyName Yip
160 schema:givenName Stephen S. F.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036521247.70
162 rdf:type schema:Person
163 sg:person.010741275221.46 schema:affiliation https://www.grid.ac/institutes/grid.411918.4
164 schema:familyName Liu
165 schema:givenName Shichang
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010741275221.46
167 rdf:type schema:Person
168 sg:person.01145375525.14 schema:affiliation https://www.grid.ac/institutes/grid.411918.4
169 schema:familyName Qu
170 schema:givenName Fangyuan
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145375525.14
172 rdf:type schema:Person
173 sg:person.01167447307.02 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
174 schema:familyName Aerts
175 schema:givenName Hugo J. W. L.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167447307.02
177 rdf:type schema:Person
178 sg:person.01304455100.49 schema:affiliation https://www.grid.ac/institutes/grid.411918.4
179 schema:familyName Ye
180 schema:givenName Zhaoxiang
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304455100.49
182 rdf:type schema:Person
183 sg:person.01305232705.30 schema:affiliation Nfd98e168f7334fcb9da0a3fe246c0c75
184 schema:familyName Parmar
185 schema:givenName Chintan
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305232705.30
187 rdf:type schema:Person
188 sg:person.01324730712.78 schema:affiliation https://www.grid.ac/institutes/grid.411918.4
189 schema:familyName Liu
190 schema:givenName Ying
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324730712.78
192 rdf:type schema:Person
193 sg:person.014224135057.83 schema:affiliation https://www.grid.ac/institutes/grid.468198.a
194 schema:familyName Gillies
195 schema:givenName Robert J.
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224135057.83
197 rdf:type schema:Person
198 sg:pub.10.1007/s00259-012-2247-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051316850
199 https://doi.org/10.1007/s00259-012-2247-0
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s00259-016-3427-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050524814
202 https://doi.org/10.1007/s00259-016-3427-0
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s13244-012-0196-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036528660
205 https://doi.org/10.1007/s13244-012-0196-6
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/s40336-014-0064-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024623895
208 https://doi.org/10.1007/s40336-014-0064-0
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/ncomms5006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009469125
211 https://doi.org/10.1038/ncomms5006
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/srep11044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026869470
214 https://doi.org/10.1038/srep11044
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/srep34921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032506380
217 https://doi.org/10.1038/srep34921
218 rdf:type schema:CreativeWork
219 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
220 https://doi.org/10.1186/gb-2004-5-10-r80
221 rdf:type schema:CreativeWork
222 https://app.dimensions.ai/details/publication/pub.1078724256 schema:CreativeWork
223 https://app.dimensions.ai/details/publication/pub.1083294187 schema:CreativeWork
224 https://doi.org/10.1001/jamaoncol.2016.2631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032988205
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1002/cam4.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008165234
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1002/jmri.21617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026461556
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.cllc.2015.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025120333
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.cllc.2015.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013316059
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.cllc.2016.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019214561
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.cmpb.2013.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027355962
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.crad.2004.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026664475
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.crad.2012.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014797896
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.ejrad.2007.08.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029745189
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.ejrad.2016.08.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004585123
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.icvts.2004.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054736156
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.lungcan.2003.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045145010
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.patcog.2012.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049617138
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.radonc.2012.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020384267
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.radonc.2015.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004503812
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/j.radonc.2016.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048962795
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/j.radonc.2016.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028826213
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/s0169-5002(01)00489-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033999391
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1088/0031-9155/61/13/r150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059031442
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1097/md.0000000000001753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006536664
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1097/rct.0b013e3181d275b6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003501014
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1097/rti.0b013e3181fbaa64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031975988
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1102/1470-7330.2013.0015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039340051
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1109/36.752194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061161992
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1111/j.1440-1843.2006.01012.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019816393
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1136/thx.28.3.354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030571954
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1148/radiol.11110264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020669084
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1148/radiol.12120254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042743379
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1148/radiol.13112553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002632069
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1148/radiol.13120949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012912111
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1148/radiol.14122524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048317385
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1148/radiol.2015151169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023809829
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1148/radiol.2016151455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079236170
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1148/radiol.2016151829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014314609
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1148/radiol.2203001701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037493640
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1148/radiol.2371041650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016375126
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1148/radiol.2391050343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026798687
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1148/radiology.179.2.2014294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078047352
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1148/radiology.200.2.8685321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082908409
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1155/2011/361589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005187391
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1177/0956797613479386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042120437
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1183/09031936.00056612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030413676
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1197/j.aem.2005.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043242064
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1259/bjr/33150223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064569104
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1378/chest.12-2351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005586124
315 rdf:type schema:CreativeWork
316 https://doi.org/10.2174/138620709789383196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069174589
317 rdf:type schema:CreativeWork
318 https://doi.org/10.2214/ajr.149.6.1139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069314600
319 rdf:type schema:CreativeWork
320 https://doi.org/10.2214/ajr.183.2.1830283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069326259
321 rdf:type schema:CreativeWork
322 https://doi.org/10.2967/jnumed.112.107375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012629075
323 rdf:type schema:CreativeWork
324 https://doi.org/10.2967/jnumed.116.181826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070928644
325 rdf:type schema:CreativeWork
326 https://doi.org/10.3174/ajnr.a2061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036982442
327 rdf:type schema:CreativeWork
328 https://doi.org/10.3322/caac.21262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013257560
329 rdf:type schema:CreativeWork
330 https://doi.org/10.3389/fonc.2016.00072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033930171
331 rdf:type schema:CreativeWork
332 https://doi.org/10.3978/j.issn.2072-1439.2014.04.05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078994967
333 rdf:type schema:CreativeWork
334 https://doi.org/10.3978/j.issn.2072-1439.2014.09.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078994964
335 rdf:type schema:CreativeWork
336 https://www.grid.ac/institutes/grid.411918.4 schema:alternateName Tianjin Medical University Cancer Institute and Hospital
337 schema:name Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
338 rdf:type schema:Organization
339 https://www.grid.ac/institutes/grid.468198.a schema:alternateName Moffitt Cancer Center
340 schema:name Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
341 Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
342 rdf:type schema:Organization
343 https://www.grid.ac/institutes/grid.62560.37 schema:alternateName Brigham and Women's Hospital
344 schema:name Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, 02115, Boston, MA, USA
345 Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 02115, Boston, MA, USA
346 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...