Quantitative trait loci for large sink capacity enhance rice grain yield under free-air CO2 enrichment conditions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Hiroshi Nakano, Satoshi Yoshinaga, Toshiyuki Takai, Yumiko Arai-Sanoh, Katsuhiko Kondo, Toshio Yamamoto, Hidemitsu Sakai, Takeshi Tokida, Yasuhiro Usui, Hirofumi Nakamura, Toshihiro Hasegawa, Motohiko Kondo

ABSTRACT

The global atmospheric CO2 concentration has been increasing annually. To determine the trait that effectively increases rice (Oryza sativa L.) grain yield under increased atmospheric CO2 concentrations, as predicted in the near future, we grew a chromosome segment substitution line (CSSL) and a near-isogenic line (NIL) producing high spikelet numbers per panicle (CSSL-GN1 and NIL-APO1, respectively) under free-air CO2 enrichment (FACE) conditions and examined the effects of a large sink capacity on grain yield, its components, and growth-related traits under increased atmospheric CO2 concentrations. Under ambient conditions, CSSL-GN1 and NIL-APO1 exhibited a similar grain yield to Koshihikari, as a result of the trade-off between increased spikelet number and reduced grain filling. However, under FACE conditions, CSSL-GN1 and NIL-APO1 had an equal or a higher grain yield than Koshihikari because of the higher number of spikelets and lower reduction in grain filling. Thus, the improvement of source activity by increased atmospheric CO2 concentrations can lead to enhanced grain yield in rice lines that have a large sink capacity. Therefore, introducing alleles that increase sink capacity into conventional varieties represents a strategy that can be used to develop high-yielding varieties under increased atmospheric CO2 concentrations, such as those predicted in the near future. More... »

PAGES

1827

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-01690-8

DOI

http://dx.doi.org/10.1038/s41598-017-01690-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085371175

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28500344


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0703", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Crop and Pasture Production", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyushu Okinawa Agricultural Research Center", 
          "id": "https://www.grid.ac/institutes/grid.482768.7", 
          "name": [
            "NARO Institute of Crop Science, 2-1-2 Kannondai, 305-8602, Tsukuba, Ibaraki, Japan", 
            "NARO Kyushu Okinawa Agricultural Research Center, 496 Izumi, 833-0041, Chikugo, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakano", 
        "givenName": "Hiroshi", 
        "id": "sg:person.0711501236.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711501236.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Agriculture and Food Research Organization", 
          "id": "https://www.grid.ac/institutes/grid.416835.d", 
          "name": [
            "NARO Institute of Crop Science, 2-1-2 Kannondai, 305-8602, Tsukuba, Ibaraki, Japan", 
            "NARO Central Region Agricultural Research Center, 1-2-1 Inada, 943-0193, Jyoetsu, Niigata, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshinaga", 
        "givenName": "Satoshi", 
        "id": "sg:person.0662645560.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662645560.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan International Research Center for Agricultural Sciences", 
          "id": "https://www.grid.ac/institutes/grid.452611.5", 
          "name": [
            "NARO Institute of Crop Science, 2-1-2 Kannondai, 305-8602, Tsukuba, Ibaraki, Japan", 
            "Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, 305-8686, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takai", 
        "givenName": "Toshiyuki", 
        "id": "sg:person.01101420146.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101420146.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Agriculture and Food Research Organization", 
          "id": "https://www.grid.ac/institutes/grid.416835.d", 
          "name": [
            "NARO Institute of Crop Science, 2-1-2 Kannondai, 305-8602, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arai-Sanoh", 
        "givenName": "Yumiko", 
        "id": "sg:person.0617543022.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617543022.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan International Research Center for Agricultural Sciences", 
          "id": "https://www.grid.ac/institutes/grid.452611.5", 
          "name": [
            "Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, 305-8686, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kondo", 
        "givenName": "Katsuhiko", 
        "id": "sg:person.01027655775.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027655775.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Agriculture and Food Research Organization", 
          "id": "https://www.grid.ac/institutes/grid.416835.d", 
          "name": [
            "NARO Institute of Crop Science, 2-1-2 Kannondai, 305-8602, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamamoto", 
        "givenName": "Toshio", 
        "id": "sg:person.01145757363.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145757363.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Agriculture and Food Research Organization", 
          "id": "https://www.grid.ac/institutes/grid.416835.d", 
          "name": [
            "NARO Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, 305-8604, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakai", 
        "givenName": "Hidemitsu", 
        "id": "sg:person.01015424626.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015424626.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Agriculture and Food Research Organization", 
          "id": "https://www.grid.ac/institutes/grid.416835.d", 
          "name": [
            "NARO Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, 305-8604, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tokida", 
        "givenName": "Takeshi", 
        "id": "sg:person.01063540026.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063540026.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Agricultural Research Center for Hokkaido Region", 
          "id": "https://www.grid.ac/institutes/grid.419106.b", 
          "name": [
            "NARO Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, 305-8604, Tsukuba, Ibaraki, Japan", 
            "NARO Hokkaido Agricultural Research Center, 9-4 Shinseiminami, Memuro-cho, 082-0081, Kasai-gun, Hokkaido, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Usui", 
        "givenName": "Yasuhiro", 
        "id": "sg:person.01215516066.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215516066.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Taiyo Keiki Co. Ltd., 1-12-3 Nakajujo, 114-0032, Kita-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Hirofumi", 
        "id": "sg:person.01177766426.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177766426.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku Agricultural Research Center", 
          "id": "https://www.grid.ac/institutes/grid.482892.d", 
          "name": [
            "NARO Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, 305-8604, Tsukuba, Ibaraki, Japan", 
            "NARO Tohoku Agricultural Research Center, 4 Shimokuriyagawaazaakahira, 020-0198, Morioka, Iwate, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasegawa", 
        "givenName": "Toshihiro", 
        "id": "sg:person.0770702166.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770702166.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "NARO Institute of Crop Science, 2-1-2 Kannondai, 305-8602, Tsukuba, Ibaraki, Japan", 
            "Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Nagoya, Aichi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kondo", 
        "givenName": "Motohiko", 
        "id": "sg:person.0645176274.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645176274.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1146/annurev.arplant.55.031903.141610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000107280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/fp12357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001525750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1626/jcs.65.214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004333529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/pcp/pcu009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009410277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2006.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009496229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/ert154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012136157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2005.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013227537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1626/pps.6.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013242639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/erp096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019206069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2010.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020890638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1113373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020946467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4290(96)01058-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026319254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1626/jcs.68.126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029220021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4290(03)00076-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030482133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12870-014-0295-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031590650", 
          "https://doi.org/10.1186/s12870-014-0295-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12870-014-0295-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031590650", 
          "https://doi.org/10.1186/s12870-014-0295-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1270/jsbbs.61.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034664006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1626/jcs.63.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034696973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2015.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034777918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.13128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036284894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/ern288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036912848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-009-1218-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040637343", 
          "https://doi.org/10.1007/s00122-009-1218-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-009-1218-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040637343", 
          "https://doi.org/10.1007/s00122-009-1218-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-009-1218-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040637343", 
          "https://doi.org/10.1007/s00122-009-1218-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2480/agrmet.68.1.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041567232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2480/agrmet.68.1.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041567232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2113(02)77017-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042275228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-3180.1974.tb01084.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043209816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1626/pps.8.259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044085010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2013.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050805182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2005.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052519841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1626/pps.12.243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053262534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj2013.0115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068996985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2012.05.0328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069031834"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "The global atmospheric CO2 concentration has been increasing annually. To determine the trait that effectively increases rice (Oryza sativa L.) grain yield under increased atmospheric CO2 concentrations, as predicted in the near future, we grew a chromosome segment substitution line (CSSL) and a near-isogenic line (NIL) producing high spikelet numbers per panicle (CSSL-GN1 and NIL-APO1, respectively) under free-air CO2 enrichment (FACE) conditions and examined the effects of a large sink capacity on grain yield, its components, and growth-related traits under increased atmospheric CO2 concentrations. Under ambient conditions, CSSL-GN1 and NIL-APO1 exhibited a similar grain yield to Koshihikari, as a result of the trade-off between increased spikelet number and reduced grain filling. However, under FACE conditions, CSSL-GN1 and NIL-APO1 had an equal or a higher grain yield than Koshihikari because of the higher number of spikelets and lower reduction in grain filling. Thus, the improvement of source activity by increased atmospheric CO2 concentrations can lead to enhanced grain yield in rice lines that have a large sink capacity. Therefore, introducing alleles that increase sink capacity into conventional varieties represents a strategy that can be used to develop high-yielding varieties under increased atmospheric CO2 concentrations, such as those predicted in the near future.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-01690-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6136226", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6083205", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Quantitative trait loci for large sink capacity enhance rice grain yield under free-air CO2 enrichment conditions", 
    "pagination": "1827", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e73b40b6e7716c35cfb1de547484d73336f8d7beb1382e69570b0024cb50f1cf"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28500344"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-01690-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085371175"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-01690-8", 
      "https://app.dimensions.ai/details/publication/pub.1085371175"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000608.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-01690-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-01690-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-01690-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-01690-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-01690-8'


 

This table displays all metadata directly associated to this object as RDF triples.

265 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-01690-8 schema:about anzsrc-for:07
2 anzsrc-for:0703
3 schema:author N7905db0d291c4e24a837d53fe24c2ae0
4 schema:citation sg:pub.10.1007/s00122-009-1218-8
5 sg:pub.10.1186/s12870-014-0295-2
6 https://doi.org/10.1016/j.agee.2006.05.015
7 https://doi.org/10.1016/j.fcr.2005.08.001
8 https://doi.org/10.1016/j.fcr.2005.12.014
9 https://doi.org/10.1016/j.fcr.2010.08.013
10 https://doi.org/10.1016/j.fcr.2013.06.004
11 https://doi.org/10.1016/j.fcr.2015.04.006
12 https://doi.org/10.1016/s0065-2113(02)77017-x
13 https://doi.org/10.1016/s0378-4290(03)00076-5
14 https://doi.org/10.1016/s0378-4290(96)01058-1
15 https://doi.org/10.1071/fp12357
16 https://doi.org/10.1093/jxb/ern288
17 https://doi.org/10.1093/jxb/erp096
18 https://doi.org/10.1093/jxb/ert154
19 https://doi.org/10.1093/pcp/pcu009
20 https://doi.org/10.1111/gcb.13128
21 https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
22 https://doi.org/10.1126/science.1113373
23 https://doi.org/10.1146/annurev.arplant.55.031903.141610
24 https://doi.org/10.1270/jsbbs.61.86
25 https://doi.org/10.1626/jcs.63.34
26 https://doi.org/10.1626/jcs.65.214
27 https://doi.org/10.1626/jcs.68.126
28 https://doi.org/10.1626/pps.12.243
29 https://doi.org/10.1626/pps.6.28
30 https://doi.org/10.1626/pps.8.259
31 https://doi.org/10.2134/agronj2013.0115
32 https://doi.org/10.2135/cropsci2012.05.0328
33 https://doi.org/10.2480/agrmet.68.1.2
34 schema:datePublished 2017-12
35 schema:datePublishedReg 2017-12-01
36 schema:description The global atmospheric CO<sub>2</sub> concentration has been increasing annually. To determine the trait that effectively increases rice (Oryza sativa L.) grain yield under increased atmospheric CO<sub>2</sub> concentrations, as predicted in the near future, we grew a chromosome segment substitution line (CSSL) and a near-isogenic line (NIL) producing high spikelet numbers per panicle (CSSL-GN1 and NIL-APO1, respectively) under free-air CO<sub>2</sub> enrichment (FACE) conditions and examined the effects of a large sink capacity on grain yield, its components, and growth-related traits under increased atmospheric CO<sub>2</sub> concentrations. Under ambient conditions, CSSL-GN1 and NIL-APO1 exhibited a similar grain yield to Koshihikari, as a result of the trade-off between increased spikelet number and reduced grain filling. However, under FACE conditions, CSSL-GN1 and NIL-APO1 had an equal or a higher grain yield than Koshihikari because of the higher number of spikelets and lower reduction in grain filling. Thus, the improvement of source activity by increased atmospheric CO<sub>2</sub> concentrations can lead to enhanced grain yield in rice lines that have a large sink capacity. Therefore, introducing alleles that increase sink capacity into conventional varieties represents a strategy that can be used to develop high-yielding varieties under increased atmospheric CO<sub>2</sub> concentrations, such as those predicted in the near future.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N7be608a5807f40e3ab98c538d366b13e
41 Ndf7fac827a7f4bf6b035e7b5a9967b60
42 sg:journal.1045337
43 schema:name Quantitative trait loci for large sink capacity enhance rice grain yield under free-air CO2 enrichment conditions
44 schema:pagination 1827
45 schema:productId N473da538da044f088445a049cdba98d0
46 N70d3c7684e884c9591fb2c1aab0e9003
47 N71c069bb35a547e3a8532900a0a816a0
48 N8e940c44dc3b478c8f762884c08358b2
49 Nb6276a1021c842c183a3134b16464c36
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085371175
51 https://doi.org/10.1038/s41598-017-01690-8
52 schema:sdDatePublished 2019-04-10T17:45
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nf75654307c1747d2bfd8134bca942ebd
55 schema:url https://www.nature.com/articles/s41598-017-01690-8
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N139f2f574e4441e9945a2b37b8f82e25 rdf:first sg:person.0662645560.42
60 rdf:rest Nf9b1ed71454d43ce9ab1ce8e41983ab1
61 N154940763f2b4b62b5a9786af7472b0f rdf:first sg:person.01015424626.80
62 rdf:rest N2ff97a00562d4326a07148bbe49c41c2
63 N2ff97a00562d4326a07148bbe49c41c2 rdf:first sg:person.01063540026.87
64 rdf:rest N5e64bdcfc3dc42ab89a0310363338ef9
65 N3c4a3077429b4ffe898d7bc9d8ff26bf rdf:first sg:person.01177766426.04
66 rdf:rest Ne0c973dbc6dc498484ba8f4916f57204
67 N473da538da044f088445a049cdba98d0 schema:name nlm_unique_id
68 schema:value 101563288
69 rdf:type schema:PropertyValue
70 N5e64bdcfc3dc42ab89a0310363338ef9 rdf:first sg:person.01215516066.60
71 rdf:rest N3c4a3077429b4ffe898d7bc9d8ff26bf
72 N638504033ac241c6aa4b978d6e444d40 rdf:first sg:person.0645176274.04
73 rdf:rest rdf:nil
74 N6935b59c8b814c4dbffc5a1a646fab82 schema:name Taiyo Keiki Co. Ltd., 1-12-3 Nakajujo, 114-0032, Kita-ku, Tokyo, Japan
75 rdf:type schema:Organization
76 N6e7e4795268b45229563f4b7513104b6 rdf:first sg:person.0617543022.39
77 rdf:rest Nfb8a74e549424cb7b97d2fd3e3f7c7b2
78 N70d3c7684e884c9591fb2c1aab0e9003 schema:name dimensions_id
79 schema:value pub.1085371175
80 rdf:type schema:PropertyValue
81 N71c069bb35a547e3a8532900a0a816a0 schema:name pubmed_id
82 schema:value 28500344
83 rdf:type schema:PropertyValue
84 N7905db0d291c4e24a837d53fe24c2ae0 rdf:first sg:person.0711501236.01
85 rdf:rest N139f2f574e4441e9945a2b37b8f82e25
86 N7be608a5807f40e3ab98c538d366b13e schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 N8e940c44dc3b478c8f762884c08358b2 schema:name doi
89 schema:value 10.1038/s41598-017-01690-8
90 rdf:type schema:PropertyValue
91 Nb6276a1021c842c183a3134b16464c36 schema:name readcube_id
92 schema:value e73b40b6e7716c35cfb1de547484d73336f8d7beb1382e69570b0024cb50f1cf
93 rdf:type schema:PropertyValue
94 Ndf7fac827a7f4bf6b035e7b5a9967b60 schema:volumeNumber 7
95 rdf:type schema:PublicationVolume
96 Ne0c973dbc6dc498484ba8f4916f57204 rdf:first sg:person.0770702166.98
97 rdf:rest N638504033ac241c6aa4b978d6e444d40
98 Ne5a5a94d039a462fbde535db5fa8fe17 rdf:first sg:person.01145757363.12
99 rdf:rest N154940763f2b4b62b5a9786af7472b0f
100 Nf75654307c1747d2bfd8134bca942ebd schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Nf9b1ed71454d43ce9ab1ce8e41983ab1 rdf:first sg:person.01101420146.08
103 rdf:rest N6e7e4795268b45229563f4b7513104b6
104 Nfb8a74e549424cb7b97d2fd3e3f7c7b2 rdf:first sg:person.01027655775.92
105 rdf:rest Ne5a5a94d039a462fbde535db5fa8fe17
106 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
107 schema:name Agricultural and Veterinary Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0703 schema:inDefinedTermSet anzsrc-for:
110 schema:name Crop and Pasture Production
111 rdf:type schema:DefinedTerm
112 sg:grant.6083205 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-01690-8
113 rdf:type schema:MonetaryGrant
114 sg:grant.6136226 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-01690-8
115 rdf:type schema:MonetaryGrant
116 sg:journal.1045337 schema:issn 2045-2322
117 schema:name Scientific Reports
118 rdf:type schema:Periodical
119 sg:person.01015424626.80 schema:affiliation https://www.grid.ac/institutes/grid.416835.d
120 schema:familyName Sakai
121 schema:givenName Hidemitsu
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015424626.80
123 rdf:type schema:Person
124 sg:person.01027655775.92 schema:affiliation https://www.grid.ac/institutes/grid.452611.5
125 schema:familyName Kondo
126 schema:givenName Katsuhiko
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027655775.92
128 rdf:type schema:Person
129 sg:person.01063540026.87 schema:affiliation https://www.grid.ac/institutes/grid.416835.d
130 schema:familyName Tokida
131 schema:givenName Takeshi
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063540026.87
133 rdf:type schema:Person
134 sg:person.01101420146.08 schema:affiliation https://www.grid.ac/institutes/grid.452611.5
135 schema:familyName Takai
136 schema:givenName Toshiyuki
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101420146.08
138 rdf:type schema:Person
139 sg:person.01145757363.12 schema:affiliation https://www.grid.ac/institutes/grid.416835.d
140 schema:familyName Yamamoto
141 schema:givenName Toshio
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145757363.12
143 rdf:type schema:Person
144 sg:person.01177766426.04 schema:affiliation N6935b59c8b814c4dbffc5a1a646fab82
145 schema:familyName Nakamura
146 schema:givenName Hirofumi
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177766426.04
148 rdf:type schema:Person
149 sg:person.01215516066.60 schema:affiliation https://www.grid.ac/institutes/grid.419106.b
150 schema:familyName Usui
151 schema:givenName Yasuhiro
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215516066.60
153 rdf:type schema:Person
154 sg:person.0617543022.39 schema:affiliation https://www.grid.ac/institutes/grid.416835.d
155 schema:familyName Arai-Sanoh
156 schema:givenName Yumiko
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617543022.39
158 rdf:type schema:Person
159 sg:person.0645176274.04 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
160 schema:familyName Kondo
161 schema:givenName Motohiko
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645176274.04
163 rdf:type schema:Person
164 sg:person.0662645560.42 schema:affiliation https://www.grid.ac/institutes/grid.416835.d
165 schema:familyName Yoshinaga
166 schema:givenName Satoshi
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662645560.42
168 rdf:type schema:Person
169 sg:person.0711501236.01 schema:affiliation https://www.grid.ac/institutes/grid.482768.7
170 schema:familyName Nakano
171 schema:givenName Hiroshi
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711501236.01
173 rdf:type schema:Person
174 sg:person.0770702166.98 schema:affiliation https://www.grid.ac/institutes/grid.482892.d
175 schema:familyName Hasegawa
176 schema:givenName Toshihiro
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770702166.98
178 rdf:type schema:Person
179 sg:pub.10.1007/s00122-009-1218-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040637343
180 https://doi.org/10.1007/s00122-009-1218-8
181 rdf:type schema:CreativeWork
182 sg:pub.10.1186/s12870-014-0295-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031590650
183 https://doi.org/10.1186/s12870-014-0295-2
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.agee.2006.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009496229
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.fcr.2005.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052519841
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.fcr.2005.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013227537
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.fcr.2010.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020890638
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.fcr.2013.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050805182
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.fcr.2015.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034777918
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/s0065-2113(02)77017-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042275228
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/s0378-4290(03)00076-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030482133
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/s0378-4290(96)01058-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026319254
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1071/fp12357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001525750
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/jxb/ern288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036912848
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/jxb/erp096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019206069
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/jxb/ert154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012136157
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/pcp/pcu009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009410277
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1111/gcb.13128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036284894
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1111/j.1365-3180.1974.tb01084.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043209816
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1126/science.1113373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020946467
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1146/annurev.arplant.55.031903.141610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000107280
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1270/jsbbs.61.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034664006
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1626/jcs.63.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034696973
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1626/jcs.65.214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004333529
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1626/jcs.68.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029220021
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1626/pps.12.243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053262534
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1626/pps.6.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013242639
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1626/pps.8.259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044085010
234 rdf:type schema:CreativeWork
235 https://doi.org/10.2134/agronj2013.0115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068996985
236 rdf:type schema:CreativeWork
237 https://doi.org/10.2135/cropsci2012.05.0328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069031834
238 rdf:type schema:CreativeWork
239 https://doi.org/10.2480/agrmet.68.1.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041567232
240 rdf:type schema:CreativeWork
241 https://www.grid.ac/institutes/grid.27476.30 schema:alternateName Nagoya University
242 schema:name Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Nagoya, Aichi, Japan
243 NARO Institute of Crop Science, 2-1-2 Kannondai, 305-8602, Tsukuba, Ibaraki, Japan
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.416835.d schema:alternateName National Agriculture and Food Research Organization
246 schema:name NARO Central Region Agricultural Research Center, 1-2-1 Inada, 943-0193, Jyoetsu, Niigata, Japan
247 NARO Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, 305-8604, Tsukuba, Ibaraki, Japan
248 NARO Institute of Crop Science, 2-1-2 Kannondai, 305-8602, Tsukuba, Ibaraki, Japan
249 rdf:type schema:Organization
250 https://www.grid.ac/institutes/grid.419106.b schema:alternateName National Agricultural Research Center for Hokkaido Region
251 schema:name NARO Hokkaido Agricultural Research Center, 9-4 Shinseiminami, Memuro-cho, 082-0081, Kasai-gun, Hokkaido, Japan
252 NARO Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, 305-8604, Tsukuba, Ibaraki, Japan
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.452611.5 schema:alternateName Japan International Research Center for Agricultural Sciences
255 schema:name Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, 305-8686, Tsukuba, Ibaraki, Japan
256 NARO Institute of Crop Science, 2-1-2 Kannondai, 305-8602, Tsukuba, Ibaraki, Japan
257 rdf:type schema:Organization
258 https://www.grid.ac/institutes/grid.482768.7 schema:alternateName Kyushu Okinawa Agricultural Research Center
259 schema:name NARO Institute of Crop Science, 2-1-2 Kannondai, 305-8602, Tsukuba, Ibaraki, Japan
260 NARO Kyushu Okinawa Agricultural Research Center, 496 Izumi, 833-0041, Chikugo, Fukuoka, Japan
261 rdf:type schema:Organization
262 https://www.grid.ac/institutes/grid.482892.d schema:alternateName Tohoku Agricultural Research Center
263 schema:name NARO Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, 305-8604, Tsukuba, Ibaraki, Japan
264 NARO Tohoku Agricultural Research Center, 4 Shimokuriyagawaazaakahira, 020-0198, Morioka, Iwate, Japan
265 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...