Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Celine Everaert, Manuel Luypaert, Jesper L. V. Maag, Quek Xiu Cheng, Marcel E. Dinger, Jan Hellemans, Pieter Mestdagh

ABSTRACT

RNA-sequencing has become the gold standard for whole-transcriptome gene expression quantification. Multiple algorithms have been developed to derive gene counts from sequencing reads. While a number of benchmarking studies have been conducted, the question remains how individual methods perform at accurately quantifying gene expression levels from RNA-sequencing reads. We performed an independent benchmarking study using RNA-sequencing data from the well established MAQCA and MAQCB reference samples. RNA-sequencing reads were processed using five workflows (Tophat-HTSeq, Tophat-Cufflinks, STAR-HTSeq, Kallisto and Salmon) and resulting gene expression measurements were compared to expression data generated by wet-lab validated qPCR assays for all protein coding genes. All methods showed high gene expression correlations with qPCR data. When comparing gene expression fold changes between MAQCA and MAQCB samples, about 85% of the genes showed consistent results between RNA-sequencing and qPCR data. Of note, each method revealed a small but specific gene set with inconsistent expression measurements. A significant proportion of these method-specific inconsistent genes were reproducibly identified in independent datasets. These genes were typically smaller, had fewer exons, and were lower expressed compared to genes with consistent expression measurements. We propose that careful validation is warranted when evaluating RNA-seq based expression profiles for this specific gene set. More... »

PAGES

1559

References to SciGraph publications

Journal

TITLE

Scientific Reports

ISSUE

1

VOLUME

7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-01617-3

DOI

http://dx.doi.org/10.1038/s41598-017-01617-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085213169

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28484260


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ghent University", 
          "id": "https://www.grid.ac/institutes/grid.5342.0", 
          "name": [
            "Center for Medical Genetics, Ghent University, Ghent, Belgium", 
            "Cancer Research Institute Ghent, Ghent University, Ghent, Belgium", 
            "Bioinformatics Institute Ghent N2N, Ghent University, Ghent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Everaert", 
        "givenName": "Celine", 
        "id": "sg:person.016034630741.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034630741.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Biogazelle, Ghent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luypaert", 
        "givenName": "Manuel", 
        "id": "sg:person.013066207627.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013066207627.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Kinghorn Cancer Center, Sydney, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maag", 
        "givenName": "Jesper L. V.", 
        "id": "sg:person.01306110600.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306110600.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Kinghorn Cancer Center, Sydney, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Quek Xiu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Kinghorn Cancer Center, Sydney, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dinger", 
        "givenName": "Marcel E.", 
        "id": "sg:person.01335510163.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335510163.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Biogazelle, Ghent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hellemans", 
        "givenName": "Jan", 
        "id": "sg:person.01337400337.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337400337.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ghent University", 
          "id": "https://www.grid.ac/institutes/grid.5342.0", 
          "name": [
            "Center for Medical Genetics, Ghent University, Ghent, Belgium", 
            "Cancer Research Institute Ghent, Ghent University, Ghent, Belgium", 
            "Bioinformatics Institute Ghent N2N, Ghent University, Ghent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mestdagh", 
        "givenName": "Pieter", 
        "id": "sg:person.01174241331.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174241331.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.molcel.2004.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000823839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011219673", 
          "https://doi.org/10.1038/nbt.2862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012425816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0550-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015222646", 
          "https://doi.org/10.1186/s13059-014-0550-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0550-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015222646", 
          "https://doi.org/10.1186/s13059-014-0550-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016098431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023247882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024493480", 
          "https://doi.org/10.1038/nbt.3519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-015-0734-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025237425", 
          "https://doi.org/10.1186/s13059-015-0734-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-1060-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026981892", 
          "https://doi.org/10.1186/s13059-016-1060-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-1060-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026981892", 
          "https://doi.org/10.1186/s13059-016-1060-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027683701", 
          "https://doi.org/10.1038/nbt.2957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2012.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030124536", 
          "https://doi.org/10.1038/nprot.2012.016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031404240", 
          "https://doi.org/10.1186/1471-2105-7-276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12064-012-0162-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036112334", 
          "https://doi.org/10.1007/s12064-012-0162-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037875102", 
          "https://doi.org/10.1038/nbt1239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037875102", 
          "https://doi.org/10.1038/nbt1239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-0940-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044116170", 
          "https://doi.org/10.1186/s13059-016-0940-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-6-r64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044394180", 
          "https://doi.org/10.1186/gb-2009-10-6-r64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044855683", 
          "https://doi.org/10.1186/1471-2105-8-461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep16923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045031591", 
          "https://doi.org/10.1038/srep16923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045381177", 
          "https://doi.org/10.1038/nmeth.1226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045449900", 
          "https://doi.org/10.1038/nmeth.3014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053282140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053365587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2013.6609583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078796277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.4197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084129290", 
          "https://doi.org/10.1038/nmeth.4197"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "RNA-sequencing has become the gold standard for whole-transcriptome gene expression quantification. Multiple algorithms have been developed to derive gene counts from sequencing reads. While a number of benchmarking studies have been conducted, the question remains how individual methods perform at accurately quantifying gene expression levels from RNA-sequencing reads. We performed an independent benchmarking study using RNA-sequencing data from the well established MAQCA and MAQCB reference samples. RNA-sequencing reads were processed using five workflows (Tophat-HTSeq, Tophat-Cufflinks, STAR-HTSeq, Kallisto and Salmon) and resulting gene expression measurements were compared to expression data generated by wet-lab validated qPCR assays for all protein coding genes. All methods showed high gene expression correlations with qPCR data. When comparing gene expression fold changes between MAQCA and MAQCB samples, about 85% of the genes showed consistent results between RNA-sequencing and qPCR data. Of note, each method revealed a small but specific gene set with inconsistent expression measurements. A significant proportion of these method-specific inconsistent genes were reproducibly identified in independent datasets. These genes were typically smaller, had fewer exons, and were lower expressed compared to genes with consistent expression measurements. We propose that careful validation is warranted when evaluating RNA-seq based expression profiles for this specific gene set.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-01617-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data", 
    "pagination": "1559", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8c50c7368d39b0052c6ad18965ea8600cb8782a2c7e6afdc1dcefa22f8752f3f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28484260"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-01617-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085213169"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-01617-3", 
      "https://app.dimensions.ai/details/publication/pub.1085213169"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000600.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-01617-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-01617-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-01617-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-01617-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-01617-3'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-01617-3 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N04cb429fb4d548f08a8e5746b3f00fc9
4 schema:citation sg:pub.10.1007/s12064-012-0162-3
5 sg:pub.10.1038/nbt.2862
6 sg:pub.10.1038/nbt.2957
7 sg:pub.10.1038/nbt.3519
8 sg:pub.10.1038/nbt1239
9 sg:pub.10.1038/nmeth.1226
10 sg:pub.10.1038/nmeth.3014
11 sg:pub.10.1038/nmeth.4197
12 sg:pub.10.1038/nprot.2012.016
13 sg:pub.10.1038/srep16923
14 sg:pub.10.1186/1471-2105-7-276
15 sg:pub.10.1186/1471-2105-8-461
16 sg:pub.10.1186/gb-2009-10-6-r64
17 sg:pub.10.1186/s13059-014-0550-8
18 sg:pub.10.1186/s13059-015-0734-x
19 sg:pub.10.1186/s13059-016-0940-1
20 sg:pub.10.1186/s13059-016-1060-7
21 https://doi.org/10.1016/j.molcel.2004.12.004
22 https://doi.org/10.1093/bioinformatics/btp120
23 https://doi.org/10.1093/bioinformatics/btp616
24 https://doi.org/10.1093/bioinformatics/bts635
25 https://doi.org/10.1093/bioinformatics/btu638
26 https://doi.org/10.1093/nar/gkv007
27 https://doi.org/10.1109/embc.2013.6609583
28 schema:datePublished 2017-12
29 schema:datePublishedReg 2017-12-01
30 schema:description RNA-sequencing has become the gold standard for whole-transcriptome gene expression quantification. Multiple algorithms have been developed to derive gene counts from sequencing reads. While a number of benchmarking studies have been conducted, the question remains how individual methods perform at accurately quantifying gene expression levels from RNA-sequencing reads. We performed an independent benchmarking study using RNA-sequencing data from the well established MAQCA and MAQCB reference samples. RNA-sequencing reads were processed using five workflows (Tophat-HTSeq, Tophat-Cufflinks, STAR-HTSeq, Kallisto and Salmon) and resulting gene expression measurements were compared to expression data generated by wet-lab validated qPCR assays for all protein coding genes. All methods showed high gene expression correlations with qPCR data. When comparing gene expression fold changes between MAQCA and MAQCB samples, about 85% of the genes showed consistent results between RNA-sequencing and qPCR data. Of note, each method revealed a small but specific gene set with inconsistent expression measurements. A significant proportion of these method-specific inconsistent genes were reproducibly identified in independent datasets. These genes were typically smaller, had fewer exons, and were lower expressed compared to genes with consistent expression measurements. We propose that careful validation is warranted when evaluating RNA-seq based expression profiles for this specific gene set.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N2799cbfe542c45f3bd50d1cbac53b180
35 Nd681106438334b1bb10abdb95611e389
36 sg:journal.1045337
37 schema:name Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data
38 schema:pagination 1559
39 schema:productId N0af8f64079dc49c380df302636606120
40 N38b98b72caa54187a0a9a610c8e44831
41 N5950e4bcc51b48d3b30efd2d462a06b3
42 Nb35dd05ef5a348cabfe928be7e904960
43 Nfa2da75ed340443481512ce2ec9d9910
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085213169
45 https://doi.org/10.1038/s41598-017-01617-3
46 schema:sdDatePublished 2019-04-11T00:30
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N4939022076f64943a1ebbdb3fd78689b
49 schema:url https://www.nature.com/articles/s41598-017-01617-3
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N03608634f62f4d59bf2babf1d3fb1e1a schema:affiliation N16eccf5be42c4298a966a05aea1a0a49
54 schema:familyName Cheng
55 schema:givenName Quek Xiu
56 rdf:type schema:Person
57 N04cb429fb4d548f08a8e5746b3f00fc9 rdf:first sg:person.016034630741.15
58 rdf:rest N39441aed2559420dba162746e2cd8e7a
59 N0af8f64079dc49c380df302636606120 schema:name readcube_id
60 schema:value 8c50c7368d39b0052c6ad18965ea8600cb8782a2c7e6afdc1dcefa22f8752f3f
61 rdf:type schema:PropertyValue
62 N16eccf5be42c4298a966a05aea1a0a49 schema:name Kinghorn Cancer Center, Sydney, Australia
63 rdf:type schema:Organization
64 N2045f4e7e80c4a22b0d4ada8762be246 rdf:first sg:person.01174241331.86
65 rdf:rest rdf:nil
66 N2799cbfe542c45f3bd50d1cbac53b180 schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 N38b98b72caa54187a0a9a610c8e44831 schema:name dimensions_id
69 schema:value pub.1085213169
70 rdf:type schema:PropertyValue
71 N39441aed2559420dba162746e2cd8e7a rdf:first sg:person.013066207627.77
72 rdf:rest Ndd285f14f24a492bb4129b352abbf3dc
73 N4939022076f64943a1ebbdb3fd78689b schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N5950e4bcc51b48d3b30efd2d462a06b3 schema:name doi
76 schema:value 10.1038/s41598-017-01617-3
77 rdf:type schema:PropertyValue
78 N6caa4959bb0c42c49a28e3a0fa13864d schema:name Kinghorn Cancer Center, Sydney, Australia
79 rdf:type schema:Organization
80 N7b8f43ed741447baba482d22c751267f rdf:first sg:person.01337400337.70
81 rdf:rest N2045f4e7e80c4a22b0d4ada8762be246
82 N99418a75953b4d0e8dbc3c572c5a155c rdf:first N03608634f62f4d59bf2babf1d3fb1e1a
83 rdf:rest Nca0bf54f82e4472284698c2f9c575093
84 Na05194975ca346ea9830d3dae956aa73 schema:name Biogazelle, Ghent, Belgium
85 rdf:type schema:Organization
86 Na182ac16b79c49b9a3ed73aac8cc246c schema:name Biogazelle, Ghent, Belgium
87 rdf:type schema:Organization
88 Nb35dd05ef5a348cabfe928be7e904960 schema:name nlm_unique_id
89 schema:value 101563288
90 rdf:type schema:PropertyValue
91 Nb9b0fbc60a13454c8ed2879bb8481e39 schema:name Kinghorn Cancer Center, Sydney, Australia
92 rdf:type schema:Organization
93 Nca0bf54f82e4472284698c2f9c575093 rdf:first sg:person.01335510163.78
94 rdf:rest N7b8f43ed741447baba482d22c751267f
95 Nd681106438334b1bb10abdb95611e389 schema:volumeNumber 7
96 rdf:type schema:PublicationVolume
97 Ndd285f14f24a492bb4129b352abbf3dc rdf:first sg:person.01306110600.10
98 rdf:rest N99418a75953b4d0e8dbc3c572c5a155c
99 Nfa2da75ed340443481512ce2ec9d9910 schema:name pubmed_id
100 schema:value 28484260
101 rdf:type schema:PropertyValue
102 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
103 schema:name Biological Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
106 schema:name Genetics
107 rdf:type schema:DefinedTerm
108 sg:journal.1045337 schema:issn 2045-2322
109 schema:name Scientific Reports
110 rdf:type schema:Periodical
111 sg:person.01174241331.86 schema:affiliation https://www.grid.ac/institutes/grid.5342.0
112 schema:familyName Mestdagh
113 schema:givenName Pieter
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174241331.86
115 rdf:type schema:Person
116 sg:person.01306110600.10 schema:affiliation Nb9b0fbc60a13454c8ed2879bb8481e39
117 schema:familyName Maag
118 schema:givenName Jesper L. V.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306110600.10
120 rdf:type schema:Person
121 sg:person.013066207627.77 schema:affiliation Na182ac16b79c49b9a3ed73aac8cc246c
122 schema:familyName Luypaert
123 schema:givenName Manuel
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013066207627.77
125 rdf:type schema:Person
126 sg:person.01335510163.78 schema:affiliation N6caa4959bb0c42c49a28e3a0fa13864d
127 schema:familyName Dinger
128 schema:givenName Marcel E.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335510163.78
130 rdf:type schema:Person
131 sg:person.01337400337.70 schema:affiliation Na05194975ca346ea9830d3dae956aa73
132 schema:familyName Hellemans
133 schema:givenName Jan
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337400337.70
135 rdf:type schema:Person
136 sg:person.016034630741.15 schema:affiliation https://www.grid.ac/institutes/grid.5342.0
137 schema:familyName Everaert
138 schema:givenName Celine
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034630741.15
140 rdf:type schema:Person
141 sg:pub.10.1007/s12064-012-0162-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036112334
142 https://doi.org/10.1007/s12064-012-0162-3
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nbt.2862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011219673
145 https://doi.org/10.1038/nbt.2862
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nbt.2957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027683701
148 https://doi.org/10.1038/nbt.2957
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nbt.3519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024493480
151 https://doi.org/10.1038/nbt.3519
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nbt1239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037875102
154 https://doi.org/10.1038/nbt1239
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
157 https://doi.org/10.1038/nmeth.1226
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nmeth.3014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045449900
160 https://doi.org/10.1038/nmeth.3014
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nmeth.4197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129290
163 https://doi.org/10.1038/nmeth.4197
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nprot.2012.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030124536
166 https://doi.org/10.1038/nprot.2012.016
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/srep16923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045031591
169 https://doi.org/10.1038/srep16923
170 rdf:type schema:CreativeWork
171 sg:pub.10.1186/1471-2105-7-276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031404240
172 https://doi.org/10.1186/1471-2105-7-276
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/1471-2105-8-461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044855683
175 https://doi.org/10.1186/1471-2105-8-461
176 rdf:type schema:CreativeWork
177 sg:pub.10.1186/gb-2009-10-6-r64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044394180
178 https://doi.org/10.1186/gb-2009-10-6-r64
179 rdf:type schema:CreativeWork
180 sg:pub.10.1186/s13059-014-0550-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015222646
181 https://doi.org/10.1186/s13059-014-0550-8
182 rdf:type schema:CreativeWork
183 sg:pub.10.1186/s13059-015-0734-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025237425
184 https://doi.org/10.1186/s13059-015-0734-x
185 rdf:type schema:CreativeWork
186 sg:pub.10.1186/s13059-016-0940-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044116170
187 https://doi.org/10.1186/s13059-016-0940-1
188 rdf:type schema:CreativeWork
189 sg:pub.10.1186/s13059-016-1060-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026981892
190 https://doi.org/10.1186/s13059-016-1060-7
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.molcel.2004.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000823839
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/bioinformatics/btp120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012425816
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/bioinformatics/btp616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247882
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/bioinformatics/bts635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053365587
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/bioinformatics/btu638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053282140
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/nar/gkv007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016098431
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1109/embc.2013.6609583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078796277
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.5342.0 schema:alternateName Ghent University
207 schema:name Bioinformatics Institute Ghent N2N, Ghent University, Ghent, Belgium
208 Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
209 Center for Medical Genetics, Ghent University, Ghent, Belgium
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...