Bioinformatic Approaches Including Predictive Metagenomic Profiling Reveal Characteristics of Bacterial Response to Petroleum Hydrocarbon Contamination in Diverse Environments View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Arghya Mukherjee, Bobby Chettri, James S. Langpoklakpam, Pijush Basak, Aravind Prasad, Ashis K. Mukherjee, Maitree Bhattacharyya, Arvind K. Singh, Dhrubajyoti Chattopadhyay

ABSTRACT

Microbial remediation of oil polluted habitats remains one of the foremost methods for restoration of petroleum hydrocarbon contaminated environments. The development of effective bioremediation strategies however, require an extensive understanding of the resident microbiome of these habitats. Recent developments such as high-throughput sequencing has greatly facilitated the advancement of microbial ecological studies in oil polluted habitats. However, effective interpretation of biological characteristics from these large datasets remain a considerable challenge. In this study, we have implemented recently developed bioinformatic tools for analyzing 65 16S rRNA datasets from 12 diverse hydrocarbon polluted habitats to decipher metagenomic characteristics of the resident bacterial communities. Using metagenomes predicted from 16S rRNA gene sequences through PICRUSt, we have comprehensively described phylogenetic and functional compositions of these habitats and additionally inferred a multitude of metagenomic features including 255 taxa and 414 functional modules which can be used as biomarkers for effective distinction between the 12 oil polluted sites. Additionally, we show that significantly over-represented taxa often contribute to either or both, hydrocarbon degradation and additional important functions. Our findings reveal significant differences between hydrocarbon contaminated sites and establishes the importance of endemic factors in addition to petroleum hydrocarbons as driving factors for sculpting hydrocarbon contaminated bacteriomes. More... »

PAGES

1108

References to SciGraph publications

  • 2013-09. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences in NATURE BIOTECHNOLOGY
  • 2011-04. Characterization of a Defined Cellulolytic and Xylanolytic Bacterial Consortium for Bioprocessing of Cellulose and Hemicelluloses in APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
  • 2015-12. Complete nitrification by Nitrospira bacteria in NATURE
  • 2010. Degradation of Polycyclic Aromatic Hydrocarbons by Mycobacterium Strains in HANDBOOK OF HYDROCARBON AND LIPID MICROBIOLOGY
  • 2014. The Family Desulfobulbaceae in THE PROKARYOTES
  • 2015-04. Changing bacterial profile of Sundarbans, the world heritage mangrove: Impact of anthropogenic interventions in WORLD JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY
  • 2006. Methylobacterium in THE PROKARYOTES
  • 2012-06. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples in GENOME BIOLOGY
  • 2002-04. Geobacter metallireducens accesses insoluble Fe(iii) oxide by chemotaxis in NATURE
  • 2002-04. Bacterial aerobic degradation of benzene, toluene, ethylbenzene and xylene in FOLIA MICROBIOLOGICA
  • 2013-06. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance in THE ISME JOURNAL
  • 2011-06. Metagenomic biomarker discovery and explanation in GENOME BIOLOGY
  • 2017-08. Exploring environmental systems and processes through next-generation sequencing technologies: insights into microbial response to petroleum contamination in key environments in THE NUCLEUS
  • 2015-12. Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing in MICROBIAL CELL FACTORIES
  • 2015-06. Microbial communities inhabiting oil-contaminated soils from two major oilfields in Northern China: Implications for active petroleum-degrading capacity in JOURNAL OF MICROBIOLOGY
  • 2014-07. Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill in THE ISME JOURNAL
  • 2016-12. Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments in SCIENTIFIC REPORTS
  • 2012-12. The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome in GIGASCIENCE
  • 2010-08. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-017-01126-3

    DOI

    http://dx.doi.org/10.1038/s41598-017-01126-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084946861

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28439121


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cluster Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Ribosomal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Environmental Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Environmental Pollutants", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Petroleum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Ribosomal, 16S", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Calcutta", 
              "id": "https://www.grid.ac/institutes/grid.59056.3f", 
              "name": [
                "Department of Biotechnology, University of Calcutta, Kolkata, West Bengal, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mukherjee", 
            "givenName": "Arghya", 
            "id": "sg:person.0736034037.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736034037.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "North Eastern Hill University", 
              "id": "https://www.grid.ac/institutes/grid.412227.0", 
              "name": [
                "Department of Biochemistry, North-Eastern Hill University, Shillong, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chettri", 
            "givenName": "Bobby", 
            "id": "sg:person.01004147237.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004147237.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "North Eastern Hill University", 
              "id": "https://www.grid.ac/institutes/grid.412227.0", 
              "name": [
                "Department of Biochemistry, North-Eastern Hill University, Shillong, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Langpoklakpam", 
            "givenName": "James S.", 
            "id": "sg:person.01052262437.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052262437.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Calcutta", 
              "id": "https://www.grid.ac/institutes/grid.59056.3f", 
              "name": [
                "Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Basak", 
            "givenName": "Pijush", 
            "id": "sg:person.01274202212.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274202212.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dr. D.Y. Patil Vidyapeeth, Pune", 
              "id": "https://www.grid.ac/institutes/grid.440681.f", 
              "name": [
                "Dr. D.Y.Patil Biotechnology and Bioinformatics Institute, Pune, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prasad", 
            "givenName": "Aravind", 
            "id": "sg:person.012460277553.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012460277553.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tezpur University", 
              "id": "https://www.grid.ac/institutes/grid.45982.32", 
              "name": [
                "Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mukherjee", 
            "givenName": "Ashis K.", 
            "id": "sg:person.015175007042.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015175007042.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Calcutta", 
              "id": "https://www.grid.ac/institutes/grid.59056.3f", 
              "name": [
                "Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bhattacharyya", 
            "givenName": "Maitree", 
            "id": "sg:person.01100637505.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100637505.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "North Eastern Hill University", 
              "id": "https://www.grid.ac/institutes/grid.412227.0", 
              "name": [
                "Department of Biochemistry, North-Eastern Hill University, Shillong, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Singh", 
            "givenName": "Arvind K.", 
            "id": "sg:person.01200014617.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200014617.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Calcutta", 
              "id": "https://www.grid.ac/institutes/grid.59056.3f", 
              "name": [
                "Department of Biotechnology, University of Calcutta, Kolkata, West Bengal, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chattopadhyay", 
            "givenName": "Dhrubajyoti", 
            "id": "sg:person.015122102022.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015122102022.85"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-77587-4_136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000007446", 
              "https://doi.org/10.1007/978-3-540-77587-4_136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-77587-4_136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000007446", 
              "https://doi.org/10.1007/978-3-540-77587-4_136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/es4020184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000116896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-6-r60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000243423", 
              "https://doi.org/10.1186/gb-2011-12-6-r60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.margen.2015.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001571154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.182.20.5757-5764.2000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004552609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12010-010-9091-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004755448", 
              "https://doi.org/10.1007/s12010-010-9091-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.micres.2016.07.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006411334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.182.10.2753-2760.2000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006669300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.00483-10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006762840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1215210110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006970837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12275-015-5023-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007291910", 
              "https://doi.org/10.1007/s12275-015-5023-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13237-016-0190-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008110089", 
              "https://doi.org/10.1007/s13237-016-0190-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13237-016-0190-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008110089", 
              "https://doi.org/10.1007/s13237-016-0190-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep37473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009051711", 
              "https://doi.org/10.1038/srep37473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.00680-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011599634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2013.22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012728874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2013.22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012728874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02817664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013036607", 
              "https://doi.org/10.1007/bf02817664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02817664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013036607", 
              "https://doi.org/10.1007/bf02817664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013175803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkp896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013384337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1187/cbe.07-09-0075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014994652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12934-015-0218-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015970517", 
              "https://doi.org/10.1186/s12934-015-0218-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12934-015-0218-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015970517", 
              "https://doi.org/10.1186/s12934-015-0218-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/416767a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017601039", 
              "https://doi.org/10.1038/416767a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/416767a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017601039", 
              "https://doi.org/10.1038/416767a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/w99-018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017725605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0038600", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017897611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2013.254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018167542", 
              "https://doi.org/10.1038/ismej.2013.254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/w10-029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018423384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/glycob/cwg047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018439534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11274-015-1814-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022115397", 
              "https://doi.org/10.1007/s11274-015-1814-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.02294-08", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022306932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0097564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022796166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mmbr.68.2.263-279.2004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023785719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.01141-07", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024029205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pnsc.2008.04.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024230789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fmicb.2014.00615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025180533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10409230490475507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025427836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mbio.01157-14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026512362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1574-6941.2002.tb00960.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027462013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1574-6941.2002.tb00960.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027462013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.01259-06", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027526245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr1044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028349189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-387-30745-1_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028864851", 
              "https://doi.org/10.1007/0-387-30745-1_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0030058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029189919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1000465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033847239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1462-2920.2009.01948.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033957677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1462-2920.2009.01948.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033957677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034019934", 
              "https://doi.org/10.1038/nbt.2676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034239058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.03006-05", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034568952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.03722-14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037946346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.01541-09", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038354310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-39044-9_267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038857387", 
              "https://doi.org/10.1007/978-3-642-39044-9_267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2012-13-6-r42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038980434", 
              "https://doi.org/10.1186/gb-2012-13-6-r42"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1590/s1517-83822009000200014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039178165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2013.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039977042", 
              "https://doi.org/10.1038/ismej.2013.1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1002687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041839473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2015/867586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042902018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.186.20.6681-6688.2004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044123973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0096552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044574100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781118960608.gbm00104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045105424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7717/peerj.1029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045626913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1942268", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046249265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16461", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046345158", 
              "https://doi.org/10.1038/nature16461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-8-r86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046347776", 
              "https://doi.org/10.1186/gb-2010-11-8-r86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.70.10.5875-5881.2004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046429347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btv287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046443759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0016943", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047074458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1002358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047130335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0093445", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047614434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.ppat.1003964", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049298307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2016.05.066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049974080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2047-217x-1-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050567563", 
              "https://doi.org/10.1186/2047-217x-1-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0059687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051007047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.1001377", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051517589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.1239303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052744398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fmicb.2015.01533", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053094795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi025953j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055195887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi025953j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055195887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/00207713-43-1-135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060348748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/ijs.0.010033-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060382335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7164/antibiotics.51.145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073635763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074260374", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074683352", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1590/s1517-838220090002000014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078785934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082552049", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083382089", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "Microbial remediation of oil polluted habitats remains one of the foremost methods for restoration of petroleum hydrocarbon contaminated environments. The development of effective bioremediation strategies however, require an extensive understanding of the resident microbiome of these habitats. Recent developments such as high-throughput sequencing has greatly facilitated the advancement of microbial ecological studies in oil polluted habitats. However, effective interpretation of biological characteristics from these large datasets remain a considerable challenge. In this study, we have implemented recently developed bioinformatic tools for analyzing 65 16S rRNA datasets from 12 diverse hydrocarbon polluted habitats to decipher metagenomic characteristics of the resident bacterial communities. Using metagenomes predicted from 16S rRNA gene sequences through PICRUSt, we have comprehensively described phylogenetic and functional compositions of these habitats and additionally inferred a multitude of metagenomic features including 255 taxa and 414 functional modules which can be used as biomarkers for effective distinction between the 12 oil polluted sites. Additionally, we show that significantly over-represented taxa often contribute to either or both, hydrocarbon degradation and additional important functions. Our findings reveal significant differences between hydrocarbon contaminated sites and establishes the importance of endemic factors in addition to petroleum hydrocarbons as driving factors for sculpting hydrocarbon contaminated bacteriomes.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-017-01126-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Bioinformatic Approaches Including Predictive Metagenomic Profiling Reveal Characteristics of Bacterial Response to Petroleum Hydrocarbon Contamination in Diverse Environments", 
        "pagination": "1108", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a1ab0f9e59bdbd7e146ab9b88807d78862effcf094496f05f4f3af17d374bda0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28439121"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-017-01126-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084946861"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-017-01126-3", 
          "https://app.dimensions.ai/details/publication/pub.1084946861"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000600.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-017-01126-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-01126-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-01126-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-01126-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-01126-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    440 TRIPLES      21 PREDICATES      122 URIs      33 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-017-01126-3 schema:about N0288d7ed512745b59f3b5ded80c1354a
    2 N17ef079fc96e4907bb2228eb7ec5048c
    3 N1aea95dc8a8743d2bdb0c9afbff608a7
    4 N31c91e56eb264c45818d7653f6cefcfd
    5 N6939857869f84d49bd6811f46df87636
    6 N8ecc75b7e27048068a389b753bc8c4d6
    7 Nb1a80af23f1e4dbe9c9a7576963cc872
    8 Nb4145a6423284bdf96ec73916aec8cd8
    9 Nbdce35736f1347a1ae57bf640f88d2a8
    10 Nd7851dcf5a404e1dad62fabd6142647e
    11 Ndfa09dc7828e465bac0634a1144ddceb
    12 Nedda3b0b7c264200ae6da9d5bd6e03c8
    13 anzsrc-for:06
    14 anzsrc-for:0605
    15 schema:author N52eec0809eeb4a01a4d92d5729c925a7
    16 schema:citation sg:pub.10.1007/0-387-30745-1_14
    17 sg:pub.10.1007/978-3-540-77587-4_136
    18 sg:pub.10.1007/978-3-642-39044-9_267
    19 sg:pub.10.1007/bf02817664
    20 sg:pub.10.1007/s11274-015-1814-5
    21 sg:pub.10.1007/s12010-010-9091-0
    22 sg:pub.10.1007/s12275-015-5023-6
    23 sg:pub.10.1007/s13237-016-0190-3
    24 sg:pub.10.1038/416767a
    25 sg:pub.10.1038/ismej.2013.1
    26 sg:pub.10.1038/ismej.2013.254
    27 sg:pub.10.1038/nature16461
    28 sg:pub.10.1038/nbt.2676
    29 sg:pub.10.1038/srep37473
    30 sg:pub.10.1186/2047-217x-1-7
    31 sg:pub.10.1186/gb-2010-11-8-r86
    32 sg:pub.10.1186/gb-2011-12-6-r60
    33 sg:pub.10.1186/gb-2012-13-6-r42
    34 sg:pub.10.1186/s12934-015-0218-4
    35 https://app.dimensions.ai/details/publication/pub.1074260374
    36 https://app.dimensions.ai/details/publication/pub.1074683352
    37 https://app.dimensions.ai/details/publication/pub.1082552049
    38 https://app.dimensions.ai/details/publication/pub.1083382089
    39 https://doi.org/10.1002/9781118960608.gbm00104
    40 https://doi.org/10.1016/j.jhazmat.2016.05.066
    41 https://doi.org/10.1016/j.margen.2015.09.001
    42 https://doi.org/10.1016/j.micres.2016.07.007
    43 https://doi.org/10.1016/j.pnsc.2008.04.001
    44 https://doi.org/10.1021/bi025953j
    45 https://doi.org/10.1021/es4020184
    46 https://doi.org/10.1038/msb.2013.22
    47 https://doi.org/10.1073/pnas.1215210110
    48 https://doi.org/10.1080/10409230490475507
    49 https://doi.org/10.1093/bioinformatics/btr381
    50 https://doi.org/10.1093/bioinformatics/btu494
    51 https://doi.org/10.1093/bioinformatics/btv287
    52 https://doi.org/10.1093/glycob/cwg047
    53 https://doi.org/10.1093/nar/gkp896
    54 https://doi.org/10.1093/nar/gkr1044
    55 https://doi.org/10.1099/00207713-43-1-135
    56 https://doi.org/10.1099/ijs.0.010033-0
    57 https://doi.org/10.1101/gr.1239303
    58 https://doi.org/10.1111/j.1462-2920.2009.01948.x
    59 https://doi.org/10.1111/j.1574-6941.2002.tb00960.x
    60 https://doi.org/10.1128/aem.01541-09
    61 https://doi.org/10.1128/aem.02294-08
    62 https://doi.org/10.1128/aem.03006-05
    63 https://doi.org/10.1128/aem.03722-14
    64 https://doi.org/10.1128/aem.70.10.5875-5881.2004
    65 https://doi.org/10.1128/jb.00483-10
    66 https://doi.org/10.1128/jb.00680-12
    67 https://doi.org/10.1128/jb.01141-07
    68 https://doi.org/10.1128/jb.01259-06
    69 https://doi.org/10.1128/jb.182.10.2753-2760.2000
    70 https://doi.org/10.1128/jb.182.20.5757-5764.2000
    71 https://doi.org/10.1128/jb.186.20.6681-6688.2004
    72 https://doi.org/10.1128/mbio.01157-14
    73 https://doi.org/10.1128/mmbr.68.2.263-279.2004
    74 https://doi.org/10.1139/w10-029
    75 https://doi.org/10.1139/w99-018
    76 https://doi.org/10.1155/2015/867586
    77 https://doi.org/10.1187/cbe.07-09-0075
    78 https://doi.org/10.1371/journal.pbio.1001377
    79 https://doi.org/10.1371/journal.pcbi.1000465
    80 https://doi.org/10.1371/journal.pcbi.1002358
    81 https://doi.org/10.1371/journal.pcbi.1002687
    82 https://doi.org/10.1371/journal.pone.0016943
    83 https://doi.org/10.1371/journal.pone.0030058
    84 https://doi.org/10.1371/journal.pone.0038600
    85 https://doi.org/10.1371/journal.pone.0059687
    86 https://doi.org/10.1371/journal.pone.0093445
    87 https://doi.org/10.1371/journal.pone.0096552
    88 https://doi.org/10.1371/journal.pone.0097564
    89 https://doi.org/10.1371/journal.ppat.1003964
    90 https://doi.org/10.1590/s1517-838220090002000014
    91 https://doi.org/10.1590/s1517-83822009000200014
    92 https://doi.org/10.2307/1942268
    93 https://doi.org/10.3389/fmicb.2014.00615
    94 https://doi.org/10.3389/fmicb.2015.01533
    95 https://doi.org/10.7164/antibiotics.51.145
    96 https://doi.org/10.7717/peerj.1029
    97 schema:datePublished 2017-12
    98 schema:datePublishedReg 2017-12-01
    99 schema:description Microbial remediation of oil polluted habitats remains one of the foremost methods for restoration of petroleum hydrocarbon contaminated environments. The development of effective bioremediation strategies however, require an extensive understanding of the resident microbiome of these habitats. Recent developments such as high-throughput sequencing has greatly facilitated the advancement of microbial ecological studies in oil polluted habitats. However, effective interpretation of biological characteristics from these large datasets remain a considerable challenge. In this study, we have implemented recently developed bioinformatic tools for analyzing 65 16S rRNA datasets from 12 diverse hydrocarbon polluted habitats to decipher metagenomic characteristics of the resident bacterial communities. Using metagenomes predicted from 16S rRNA gene sequences through PICRUSt, we have comprehensively described phylogenetic and functional compositions of these habitats and additionally inferred a multitude of metagenomic features including 255 taxa and 414 functional modules which can be used as biomarkers for effective distinction between the 12 oil polluted sites. Additionally, we show that significantly over-represented taxa often contribute to either or both, hydrocarbon degradation and additional important functions. Our findings reveal significant differences between hydrocarbon contaminated sites and establishes the importance of endemic factors in addition to petroleum hydrocarbons as driving factors for sculpting hydrocarbon contaminated bacteriomes.
    100 schema:genre research_article
    101 schema:inLanguage en
    102 schema:isAccessibleForFree true
    103 schema:isPartOf N11300b3e0d924d75b74a624990c688c7
    104 Nb47262d613e54db2a3d3b88298071244
    105 sg:journal.1045337
    106 schema:name Bioinformatic Approaches Including Predictive Metagenomic Profiling Reveal Characteristics of Bacterial Response to Petroleum Hydrocarbon Contamination in Diverse Environments
    107 schema:pagination 1108
    108 schema:productId N0cf3f0b3fa954e529cc4df361cff31a3
    109 N250a5cdc82de4caeb140f2360de31de6
    110 N747efddb9c3549649326573b2386f4af
    111 N8618efa1a00c4b4db4769bbefc139483
    112 Nc5f717592a7341c39c24521decbcfc8e
    113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084946861
    114 https://doi.org/10.1038/s41598-017-01126-3
    115 schema:sdDatePublished 2019-04-10T13:31
    116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    117 schema:sdPublisher N2925f240e2b2405494f4c2a6de54ed86
    118 schema:url https://www.nature.com/articles/s41598-017-01126-3
    119 sgo:license sg:explorer/license/
    120 sgo:sdDataset articles
    121 rdf:type schema:ScholarlyArticle
    122 N0288d7ed512745b59f3b5ded80c1354a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name RNA, Ribosomal, 16S
    124 rdf:type schema:DefinedTerm
    125 N0cf3f0b3fa954e529cc4df361cff31a3 schema:name doi
    126 schema:value 10.1038/s41598-017-01126-3
    127 rdf:type schema:PropertyValue
    128 N11300b3e0d924d75b74a624990c688c7 schema:volumeNumber 7
    129 rdf:type schema:PublicationVolume
    130 N17ef079fc96e4907bb2228eb7ec5048c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Bacteria
    132 rdf:type schema:DefinedTerm
    133 N1aea95dc8a8743d2bdb0c9afbff608a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Cluster Analysis
    135 rdf:type schema:DefinedTerm
    136 N250a5cdc82de4caeb140f2360de31de6 schema:name dimensions_id
    137 schema:value pub.1084946861
    138 rdf:type schema:PropertyValue
    139 N2751928805124582a5e3ce5130a10338 rdf:first sg:person.012460277553.23
    140 rdf:rest N32870c700d15494d891a45c3fc80d825
    141 N2925f240e2b2405494f4c2a6de54ed86 schema:name Springer Nature - SN SciGraph project
    142 rdf:type schema:Organization
    143 N31c91e56eb264c45818d7653f6cefcfd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Metagenomics
    145 rdf:type schema:DefinedTerm
    146 N32870c700d15494d891a45c3fc80d825 rdf:first sg:person.015175007042.75
    147 rdf:rest Ne8489ee679f94c8792009cc2e8f866c0
    148 N42feefcaf83647bbbca8dc392d56ee1a rdf:first sg:person.01004147237.55
    149 rdf:rest N82a1bfa0bc294d09ac1b1a062f1cd85f
    150 N52eec0809eeb4a01a4d92d5729c925a7 rdf:first sg:person.0736034037.74
    151 rdf:rest N42feefcaf83647bbbca8dc392d56ee1a
    152 N6939857869f84d49bd6811f46df87636 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Computational Biology
    154 rdf:type schema:DefinedTerm
    155 N747efddb9c3549649326573b2386f4af schema:name nlm_unique_id
    156 schema:value 101563288
    157 rdf:type schema:PropertyValue
    158 N82a1bfa0bc294d09ac1b1a062f1cd85f rdf:first sg:person.01052262437.38
    159 rdf:rest N8979774aaa60490fa765ac09560fd943
    160 N83c0ce80b3e44979bcaa8fe4be2458bf rdf:first sg:person.015122102022.85
    161 rdf:rest rdf:nil
    162 N8618efa1a00c4b4db4769bbefc139483 schema:name pubmed_id
    163 schema:value 28439121
    164 rdf:type schema:PropertyValue
    165 N8979774aaa60490fa765ac09560fd943 rdf:first sg:person.01274202212.81
    166 rdf:rest N2751928805124582a5e3ce5130a10338
    167 N8ecc75b7e27048068a389b753bc8c4d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name DNA, Ribosomal
    169 rdf:type schema:DefinedTerm
    170 Nb1a80af23f1e4dbe9c9a7576963cc872 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Environmental Pollutants
    172 rdf:type schema:DefinedTerm
    173 Nb3e7eba3e1714aaab506c93cb748e634 rdf:first sg:person.01200014617.88
    174 rdf:rest N83c0ce80b3e44979bcaa8fe4be2458bf
    175 Nb4145a6423284bdf96ec73916aec8cd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Environmental Microbiology
    177 rdf:type schema:DefinedTerm
    178 Nb47262d613e54db2a3d3b88298071244 schema:issueNumber 1
    179 rdf:type schema:PublicationIssue
    180 Nbdce35736f1347a1ae57bf640f88d2a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Phylogeny
    182 rdf:type schema:DefinedTerm
    183 Nc5f717592a7341c39c24521decbcfc8e schema:name readcube_id
    184 schema:value a1ab0f9e59bdbd7e146ab9b88807d78862effcf094496f05f4f3af17d374bda0
    185 rdf:type schema:PropertyValue
    186 Nd7851dcf5a404e1dad62fabd6142647e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Biota
    188 rdf:type schema:DefinedTerm
    189 Ndfa09dc7828e465bac0634a1144ddceb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Sequence Analysis, DNA
    191 rdf:type schema:DefinedTerm
    192 Ne8489ee679f94c8792009cc2e8f866c0 rdf:first sg:person.01100637505.44
    193 rdf:rest Nb3e7eba3e1714aaab506c93cb748e634
    194 Nedda3b0b7c264200ae6da9d5bd6e03c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Petroleum
    196 rdf:type schema:DefinedTerm
    197 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    198 schema:name Biological Sciences
    199 rdf:type schema:DefinedTerm
    200 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    201 schema:name Microbiology
    202 rdf:type schema:DefinedTerm
    203 sg:journal.1045337 schema:issn 2045-2322
    204 schema:name Scientific Reports
    205 rdf:type schema:Periodical
    206 sg:person.01004147237.55 schema:affiliation https://www.grid.ac/institutes/grid.412227.0
    207 schema:familyName Chettri
    208 schema:givenName Bobby
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004147237.55
    210 rdf:type schema:Person
    211 sg:person.01052262437.38 schema:affiliation https://www.grid.ac/institutes/grid.412227.0
    212 schema:familyName Langpoklakpam
    213 schema:givenName James S.
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052262437.38
    215 rdf:type schema:Person
    216 sg:person.01100637505.44 schema:affiliation https://www.grid.ac/institutes/grid.59056.3f
    217 schema:familyName Bhattacharyya
    218 schema:givenName Maitree
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100637505.44
    220 rdf:type schema:Person
    221 sg:person.01200014617.88 schema:affiliation https://www.grid.ac/institutes/grid.412227.0
    222 schema:familyName Singh
    223 schema:givenName Arvind K.
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200014617.88
    225 rdf:type schema:Person
    226 sg:person.012460277553.23 schema:affiliation https://www.grid.ac/institutes/grid.440681.f
    227 schema:familyName Prasad
    228 schema:givenName Aravind
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012460277553.23
    230 rdf:type schema:Person
    231 sg:person.01274202212.81 schema:affiliation https://www.grid.ac/institutes/grid.59056.3f
    232 schema:familyName Basak
    233 schema:givenName Pijush
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274202212.81
    235 rdf:type schema:Person
    236 sg:person.015122102022.85 schema:affiliation https://www.grid.ac/institutes/grid.59056.3f
    237 schema:familyName Chattopadhyay
    238 schema:givenName Dhrubajyoti
    239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015122102022.85
    240 rdf:type schema:Person
    241 sg:person.015175007042.75 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
    242 schema:familyName Mukherjee
    243 schema:givenName Ashis K.
    244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015175007042.75
    245 rdf:type schema:Person
    246 sg:person.0736034037.74 schema:affiliation https://www.grid.ac/institutes/grid.59056.3f
    247 schema:familyName Mukherjee
    248 schema:givenName Arghya
    249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736034037.74
    250 rdf:type schema:Person
    251 sg:pub.10.1007/0-387-30745-1_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028864851
    252 https://doi.org/10.1007/0-387-30745-1_14
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/978-3-540-77587-4_136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000007446
    255 https://doi.org/10.1007/978-3-540-77587-4_136
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/978-3-642-39044-9_267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038857387
    258 https://doi.org/10.1007/978-3-642-39044-9_267
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/bf02817664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013036607
    261 https://doi.org/10.1007/bf02817664
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/s11274-015-1814-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022115397
    264 https://doi.org/10.1007/s11274-015-1814-5
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1007/s12010-010-9091-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004755448
    267 https://doi.org/10.1007/s12010-010-9091-0
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1007/s12275-015-5023-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007291910
    270 https://doi.org/10.1007/s12275-015-5023-6
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1007/s13237-016-0190-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008110089
    273 https://doi.org/10.1007/s13237-016-0190-3
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/416767a schema:sameAs https://app.dimensions.ai/details/publication/pub.1017601039
    276 https://doi.org/10.1038/416767a
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/ismej.2013.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039977042
    279 https://doi.org/10.1038/ismej.2013.1
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/ismej.2013.254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018167542
    282 https://doi.org/10.1038/ismej.2013.254
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/nature16461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046345158
    285 https://doi.org/10.1038/nature16461
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/nbt.2676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034019934
    288 https://doi.org/10.1038/nbt.2676
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/srep37473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009051711
    291 https://doi.org/10.1038/srep37473
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1186/2047-217x-1-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050567563
    294 https://doi.org/10.1186/2047-217x-1-7
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1186/gb-2010-11-8-r86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046347776
    297 https://doi.org/10.1186/gb-2010-11-8-r86
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1186/gb-2011-12-6-r60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000243423
    300 https://doi.org/10.1186/gb-2011-12-6-r60
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1186/gb-2012-13-6-r42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038980434
    303 https://doi.org/10.1186/gb-2012-13-6-r42
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1186/s12934-015-0218-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015970517
    306 https://doi.org/10.1186/s12934-015-0218-4
    307 rdf:type schema:CreativeWork
    308 https://app.dimensions.ai/details/publication/pub.1074260374 schema:CreativeWork
    309 https://app.dimensions.ai/details/publication/pub.1074683352 schema:CreativeWork
    310 https://app.dimensions.ai/details/publication/pub.1082552049 schema:CreativeWork
    311 https://app.dimensions.ai/details/publication/pub.1083382089 schema:CreativeWork
    312 https://doi.org/10.1002/9781118960608.gbm00104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045105424
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1016/j.jhazmat.2016.05.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049974080
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1016/j.margen.2015.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001571154
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1016/j.micres.2016.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006411334
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1016/j.pnsc.2008.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024230789
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1021/bi025953j schema:sameAs https://app.dimensions.ai/details/publication/pub.1055195887
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1021/es4020184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000116896
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1038/msb.2013.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012728874
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1073/pnas.1215210110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006970837
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1080/10409230490475507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025427836
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1093/bioinformatics/btr381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013175803
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.1093/bioinformatics/btu494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034239058
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.1093/bioinformatics/btv287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046443759
    337 rdf:type schema:CreativeWork
    338 https://doi.org/10.1093/glycob/cwg047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018439534
    339 rdf:type schema:CreativeWork
    340 https://doi.org/10.1093/nar/gkp896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013384337
    341 rdf:type schema:CreativeWork
    342 https://doi.org/10.1093/nar/gkr1044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028349189
    343 rdf:type schema:CreativeWork
    344 https://doi.org/10.1099/00207713-43-1-135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060348748
    345 rdf:type schema:CreativeWork
    346 https://doi.org/10.1099/ijs.0.010033-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060382335
    347 rdf:type schema:CreativeWork
    348 https://doi.org/10.1101/gr.1239303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052744398
    349 rdf:type schema:CreativeWork
    350 https://doi.org/10.1111/j.1462-2920.2009.01948.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033957677
    351 rdf:type schema:CreativeWork
    352 https://doi.org/10.1111/j.1574-6941.2002.tb00960.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027462013
    353 rdf:type schema:CreativeWork
    354 https://doi.org/10.1128/aem.01541-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038354310
    355 rdf:type schema:CreativeWork
    356 https://doi.org/10.1128/aem.02294-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022306932
    357 rdf:type schema:CreativeWork
    358 https://doi.org/10.1128/aem.03006-05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034568952
    359 rdf:type schema:CreativeWork
    360 https://doi.org/10.1128/aem.03722-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037946346
    361 rdf:type schema:CreativeWork
    362 https://doi.org/10.1128/aem.70.10.5875-5881.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046429347
    363 rdf:type schema:CreativeWork
    364 https://doi.org/10.1128/jb.00483-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006762840
    365 rdf:type schema:CreativeWork
    366 https://doi.org/10.1128/jb.00680-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011599634
    367 rdf:type schema:CreativeWork
    368 https://doi.org/10.1128/jb.01141-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024029205
    369 rdf:type schema:CreativeWork
    370 https://doi.org/10.1128/jb.01259-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027526245
    371 rdf:type schema:CreativeWork
    372 https://doi.org/10.1128/jb.182.10.2753-2760.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006669300
    373 rdf:type schema:CreativeWork
    374 https://doi.org/10.1128/jb.182.20.5757-5764.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004552609
    375 rdf:type schema:CreativeWork
    376 https://doi.org/10.1128/jb.186.20.6681-6688.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044123973
    377 rdf:type schema:CreativeWork
    378 https://doi.org/10.1128/mbio.01157-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026512362
    379 rdf:type schema:CreativeWork
    380 https://doi.org/10.1128/mmbr.68.2.263-279.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023785719
    381 rdf:type schema:CreativeWork
    382 https://doi.org/10.1139/w10-029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018423384
    383 rdf:type schema:CreativeWork
    384 https://doi.org/10.1139/w99-018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017725605
    385 rdf:type schema:CreativeWork
    386 https://doi.org/10.1155/2015/867586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042902018
    387 rdf:type schema:CreativeWork
    388 https://doi.org/10.1187/cbe.07-09-0075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014994652
    389 rdf:type schema:CreativeWork
    390 https://doi.org/10.1371/journal.pbio.1001377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051517589
    391 rdf:type schema:CreativeWork
    392 https://doi.org/10.1371/journal.pcbi.1000465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033847239
    393 rdf:type schema:CreativeWork
    394 https://doi.org/10.1371/journal.pcbi.1002358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047130335
    395 rdf:type schema:CreativeWork
    396 https://doi.org/10.1371/journal.pcbi.1002687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041839473
    397 rdf:type schema:CreativeWork
    398 https://doi.org/10.1371/journal.pone.0016943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047074458
    399 rdf:type schema:CreativeWork
    400 https://doi.org/10.1371/journal.pone.0030058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029189919
    401 rdf:type schema:CreativeWork
    402 https://doi.org/10.1371/journal.pone.0038600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017897611
    403 rdf:type schema:CreativeWork
    404 https://doi.org/10.1371/journal.pone.0059687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051007047
    405 rdf:type schema:CreativeWork
    406 https://doi.org/10.1371/journal.pone.0093445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047614434
    407 rdf:type schema:CreativeWork
    408 https://doi.org/10.1371/journal.pone.0096552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044574100
    409 rdf:type schema:CreativeWork
    410 https://doi.org/10.1371/journal.pone.0097564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022796166
    411 rdf:type schema:CreativeWork
    412 https://doi.org/10.1371/journal.ppat.1003964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049298307
    413 rdf:type schema:CreativeWork
    414 https://doi.org/10.1590/s1517-838220090002000014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078785934
    415 rdf:type schema:CreativeWork
    416 https://doi.org/10.1590/s1517-83822009000200014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039178165
    417 rdf:type schema:CreativeWork
    418 https://doi.org/10.2307/1942268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046249265
    419 rdf:type schema:CreativeWork
    420 https://doi.org/10.3389/fmicb.2014.00615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025180533
    421 rdf:type schema:CreativeWork
    422 https://doi.org/10.3389/fmicb.2015.01533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053094795
    423 rdf:type schema:CreativeWork
    424 https://doi.org/10.7164/antibiotics.51.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073635763
    425 rdf:type schema:CreativeWork
    426 https://doi.org/10.7717/peerj.1029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045626913
    427 rdf:type schema:CreativeWork
    428 https://www.grid.ac/institutes/grid.412227.0 schema:alternateName North Eastern Hill University
    429 schema:name Department of Biochemistry, North-Eastern Hill University, Shillong, India
    430 rdf:type schema:Organization
    431 https://www.grid.ac/institutes/grid.440681.f schema:alternateName Dr. D.Y. Patil Vidyapeeth, Pune
    432 schema:name Dr. D.Y.Patil Biotechnology and Bioinformatics Institute, Pune, India
    433 rdf:type schema:Organization
    434 https://www.grid.ac/institutes/grid.45982.32 schema:alternateName Tezpur University
    435 schema:name Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
    436 rdf:type schema:Organization
    437 https://www.grid.ac/institutes/grid.59056.3f schema:alternateName University of Calcutta
    438 schema:name Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
    439 Department of Biotechnology, University of Calcutta, Kolkata, West Bengal, India
    440 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...