24 h-accelerometry in epidemiological studies: automated detection of non-wear time in comparison to diary information View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-05-22

AUTHORS

Lina Jaeschke, Agnes Luzak, Astrid Steinbrecher, Stephanie Jeran, Maike Ferland, Birgit Linkohr, Holger Schulz, Tobias Pischon

ABSTRACT

Estimation of physical activity using 24 h-accelerometry requires detection of accelerometer non-wear time (NWT). It is common practice to define NWT as periods >60 minutes of consecutive zero-accelerations, but this algorithm was originally developed for waking hours only and its applicability to 24 h-accelerometry is unclear. We investigated sensitivity and specificity of different algorithms to detect NWT in 24 h-accelerometry compared to diary in 47 ActivE and 559 KORA participants. NWT was determined with algorithms >60, >90, >120, >150, or >180 minutes of consecutive zero-counts. Overall, 9.1% (ActivE) and 15.4% (KORA) of reported NWT was >60 minutes. Sensitivity and specificity were lowest for the 60-min algorithm in ActivE (0.72 and 0.00) and KORA (0.64 and 0.08), and highest for the 180-min algorithm in ActivE (0.88 and 0.92) and for the 120-min algorithm in KORA (0.76 and 0.74). Nevertheless, when applying these last two algorithms, the overlap of accelerometry with any diary based NWT minutes was around 20% only. In conclusion, only a small proportion of NWT is >60 minutes. The 60-min algorithm is less suitable for NWT detection in 24 h-accelerometry because of low sensitivity, specificity, and small overlap with reported NWT minutes. Longer algorithms perform better but detect lower proportions of reported NWT. More... »

PAGES

2227

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-01092-w

DOI

http://dx.doi.org/10.1038/s41598-017-01092-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085459562

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28533553


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Accelerometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exercise", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Public Health Surveillance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.211011.2", 
          "name": [
            "Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jaeschke", 
        "givenName": "Lina", 
        "id": "sg:person.01232337642.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232337642.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Epidemiology I, Helmholtz Zentrum M\u00fcnchen - German Research Center for Environmental Health, Neuherberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Institute of Epidemiology I, Helmholtz Zentrum M\u00fcnchen - German Research Center for Environmental Health, Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luzak", 
        "givenName": "Agnes", 
        "id": "sg:person.07624021745.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07624021745.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.211011.2", 
          "name": [
            "Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steinbrecher", 
        "givenName": "Astrid", 
        "id": "sg:person.0604451142.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604451142.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.211011.2", 
          "name": [
            "Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeran", 
        "givenName": "Stephanie", 
        "id": "sg:person.0605466241.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605466241.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Epidemiology I, Helmholtz Zentrum M\u00fcnchen - German Research Center for Environmental Health, Neuherberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Institute of Epidemiology I, Helmholtz Zentrum M\u00fcnchen - German Research Center for Environmental Health, Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferland", 
        "givenName": "Maike", 
        "id": "sg:person.012277323757.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012277323757.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Epidemiology II, Helmholtz Zentrum M\u00fcnchen - German Research Center for Environmental Health, Neuherberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Institute of Epidemiology II, Helmholtz Zentrum M\u00fcnchen - German Research Center for Environmental Health, Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Linkohr", 
        "givenName": "Birgit", 
        "id": "sg:person.01146120514.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146120514.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.452624.3", 
          "name": [
            "Institute of Epidemiology I, Helmholtz Zentrum M\u00fcnchen - German Research Center for Environmental Health, Neuherberg, Germany", 
            "Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schulz", 
        "givenName": "Holger", 
        "id": "sg:person.0637527306.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637527306.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.452396.f", 
          "name": [
            "Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany", 
            "Charit\u00e9 \u2013 Universit\u00e4tsmedizin Berlin, Berlin, Germany", 
            "DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pischon", 
        "givenName": "Tobias", 
        "id": "sg:person.01200324130.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200324130.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s12889-015-1847-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016884783", 
          "https://doi.org/10.1186/s12889-015-1847-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1479-5868-5-56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035703248", 
          "https://doi.org/10.1186/1479-5868-5-56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-14-1210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024226420", 
          "https://doi.org/10.1186/1471-2458-14-1210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10654-014-9890-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027471058", 
          "https://doi.org/10.1007/s10654-014-9890-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1479-5868-10-120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008630548", 
          "https://doi.org/10.1186/1479-5868-10-120"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05-22", 
    "datePublishedReg": "2017-05-22", 
    "description": "Estimation of physical activity using 24\u2009h-accelerometry requires detection of accelerometer non-wear time (NWT). It is common practice to define NWT as periods >60\u2009minutes of consecutive zero-accelerations, but this algorithm was originally developed for waking hours only and its applicability to 24\u2009h-accelerometry is unclear. We investigated sensitivity and specificity of different algorithms to detect NWT in 24\u2009h-accelerometry compared to diary in 47 ActivE and 559 KORA participants. NWT was determined with algorithms >60, >90, >120, >150, or >180\u2009minutes of consecutive zero-counts. Overall, 9.1% (ActivE) and 15.4% (KORA) of reported NWT was >60\u2009minutes. Sensitivity and specificity were lowest for the 60-min algorithm in ActivE (0.72 and 0.00) and KORA (0.64 and 0.08), and highest for the 180-min algorithm in ActivE (0.88 and 0.92) and for the 120-min algorithm in KORA (0.76 and 0.74). Nevertheless, when applying these last two algorithms, the overlap of accelerometry with any diary based NWT minutes was around 20% only. In conclusion, only a small proportion of NWT is >60\u2009minutes. The 60-min algorithm is less suitable for NWT detection in 24\u2009h-accelerometry because of low sensitivity, specificity, and small overlap with reported NWT minutes. Longer algorithms perform better but detect lower proportions of reported NWT.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-017-01092-w", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "non-wear time", 
      "different algorithms", 
      "algorithm", 
      "detection", 
      "common practice", 
      "small overlap", 
      "information", 
      "estimation", 
      "applicability", 
      "time", 
      "Active", 
      "zero-count", 
      "overlap", 
      "practice", 
      "comparison", 
      "diary information", 
      "minutes", 
      "participants", 
      "sensitivity", 
      "specificity", 
      "physical activity", 
      "diary", 
      "KORA participants", 
      "epidemiological studies", 
      "study", 
      "activity", 
      "KORA", 
      "low sensitivity", 
      "small proportion", 
      "lower proportion", 
      "hours", 
      "accelerometry", 
      "conclusion", 
      "proportion", 
      "period"
    ], 
    "name": "24 h-accelerometry in epidemiological studies: automated detection of non-wear time in comparison to diary information", 
    "pagination": "2227", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085459562"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-01092-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28533553"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-01092-w", 
      "https://app.dimensions.ai/details/publication/pub.1085459562"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_752.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-017-01092-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-01092-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-01092-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-01092-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-01092-w'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      76 URIs      63 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-01092-w schema:about N206d49f434904d8883b6d5a03d841eb4
2 N3da7cf88037243f9809e55cb4f6b3cf9
3 N40ce0065937e4eb5accd40100cad0516
4 N57b1cd8a34a04d2cb6ba3790f59897d4
5 N5d5749a5816c4b5ca12b205b5e2650ea
6 N96bac8d7ac254ccab28def60bab4f6f2
7 Na910eaf35bf241fcb5a2bed8156560b4
8 Nd9e73cab58094d8e9f47c74248887eee
9 Ndd5cea8a08f2462b8cad304c451cdffb
10 Ne76ab2dfd4574c7a85268075e22c6cf7
11 Neca2052becc4403aa81fc26fb28db78d
12 anzsrc-for:08
13 anzsrc-for:0801
14 schema:author N786a94b9c6f643efbfe4eb6c3d8c7195
15 schema:citation sg:pub.10.1007/s10654-014-9890-7
16 sg:pub.10.1186/1471-2458-14-1210
17 sg:pub.10.1186/1479-5868-10-120
18 sg:pub.10.1186/1479-5868-5-56
19 sg:pub.10.1186/s12889-015-1847-6
20 schema:datePublished 2017-05-22
21 schema:datePublishedReg 2017-05-22
22 schema:description Estimation of physical activity using 24 h-accelerometry requires detection of accelerometer non-wear time (NWT). It is common practice to define NWT as periods >60 minutes of consecutive zero-accelerations, but this algorithm was originally developed for waking hours only and its applicability to 24 h-accelerometry is unclear. We investigated sensitivity and specificity of different algorithms to detect NWT in 24 h-accelerometry compared to diary in 47 ActivE and 559 KORA participants. NWT was determined with algorithms >60, >90, >120, >150, or >180 minutes of consecutive zero-counts. Overall, 9.1% (ActivE) and 15.4% (KORA) of reported NWT was >60 minutes. Sensitivity and specificity were lowest for the 60-min algorithm in ActivE (0.72 and 0.00) and KORA (0.64 and 0.08), and highest for the 180-min algorithm in ActivE (0.88 and 0.92) and for the 120-min algorithm in KORA (0.76 and 0.74). Nevertheless, when applying these last two algorithms, the overlap of accelerometry with any diary based NWT minutes was around 20% only. In conclusion, only a small proportion of NWT is >60 minutes. The 60-min algorithm is less suitable for NWT detection in 24 h-accelerometry because of low sensitivity, specificity, and small overlap with reported NWT minutes. Longer algorithms perform better but detect lower proportions of reported NWT.
23 schema:genre article
24 schema:isAccessibleForFree true
25 schema:isPartOf N0b9f4da0bd814efcac99a9c79d955105
26 Nbed49ba78b844e3eb7dd321fbb7b4189
27 sg:journal.1045337
28 schema:keywords Active
29 KORA
30 KORA participants
31 accelerometry
32 activity
33 algorithm
34 applicability
35 common practice
36 comparison
37 conclusion
38 detection
39 diary
40 diary information
41 different algorithms
42 epidemiological studies
43 estimation
44 hours
45 information
46 low sensitivity
47 lower proportion
48 minutes
49 non-wear time
50 overlap
51 participants
52 period
53 physical activity
54 practice
55 proportion
56 sensitivity
57 small overlap
58 small proportion
59 specificity
60 study
61 time
62 zero-count
63 schema:name 24 h-accelerometry in epidemiological studies: automated detection of non-wear time in comparison to diary information
64 schema:pagination 2227
65 schema:productId N23b0221e96074ad2a05e2d847d47c8cc
66 N24c4524665d641b3ae196bfc821bdfb7
67 N6a3d88370c8f4b2f8a4aaac242fae8da
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085459562
69 https://doi.org/10.1038/s41598-017-01092-w
70 schema:sdDatePublished 2022-10-01T06:43
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Nd2cfdd50945249149f0ffba507a84ce9
73 schema:url https://doi.org/10.1038/s41598-017-01092-w
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N013a4576e3074785bdd3bcdf09a23a4f rdf:first sg:person.07624021745.06
78 rdf:rest N7bca718e2263431c907464c67f33fd4f
79 N0b9f4da0bd814efcac99a9c79d955105 schema:volumeNumber 7
80 rdf:type schema:PublicationVolume
81 N206d49f434904d8883b6d5a03d841eb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Exercise
83 rdf:type schema:DefinedTerm
84 N23b0221e96074ad2a05e2d847d47c8cc schema:name dimensions_id
85 schema:value pub.1085459562
86 rdf:type schema:PropertyValue
87 N24c4524665d641b3ae196bfc821bdfb7 schema:name doi
88 schema:value 10.1038/s41598-017-01092-w
89 rdf:type schema:PropertyValue
90 N3da7cf88037243f9809e55cb4f6b3cf9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Middle Aged
92 rdf:type schema:DefinedTerm
93 N40ce0065937e4eb5accd40100cad0516 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Cross-Sectional Studies
95 rdf:type schema:DefinedTerm
96 N57b1cd8a34a04d2cb6ba3790f59897d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Aged
98 rdf:type schema:DefinedTerm
99 N5d5749a5816c4b5ca12b205b5e2650ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Algorithms
101 rdf:type schema:DefinedTerm
102 N6a3d88370c8f4b2f8a4aaac242fae8da schema:name pubmed_id
103 schema:value 28533553
104 rdf:type schema:PropertyValue
105 N786a94b9c6f643efbfe4eb6c3d8c7195 rdf:first sg:person.01232337642.45
106 rdf:rest N013a4576e3074785bdd3bcdf09a23a4f
107 N7bca718e2263431c907464c67f33fd4f rdf:first sg:person.0604451142.08
108 rdf:rest Nbb7dc46d9ca14b6581bbe4cce8bc1bde
109 N96bac8d7ac254ccab28def60bab4f6f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Adult
111 rdf:type schema:DefinedTerm
112 Na910eaf35bf241fcb5a2bed8156560b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Humans
114 rdf:type schema:DefinedTerm
115 Nb9ea1a0d35214f8d97340db613c1e937 rdf:first sg:person.012277323757.52
116 rdf:rest Nebe90488ed3d4553bd87a0d308af9b00
117 Nbb7dc46d9ca14b6581bbe4cce8bc1bde rdf:first sg:person.0605466241.08
118 rdf:rest Nb9ea1a0d35214f8d97340db613c1e937
119 Nbed49ba78b844e3eb7dd321fbb7b4189 schema:issueNumber 1
120 rdf:type schema:PublicationIssue
121 Nd1a1b91e561b4821bd02d732051829ac rdf:first sg:person.0637527306.80
122 rdf:rest Ne904e6e7a3074cb0bb2f9c97ef55b1df
123 Nd2cfdd50945249149f0ffba507a84ce9 schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 Nd9e73cab58094d8e9f47c74248887eee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Accelerometry
127 rdf:type schema:DefinedTerm
128 Ndd5cea8a08f2462b8cad304c451cdffb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Public Health Surveillance
130 rdf:type schema:DefinedTerm
131 Ne76ab2dfd4574c7a85268075e22c6cf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Sensitivity and Specificity
133 rdf:type schema:DefinedTerm
134 Ne904e6e7a3074cb0bb2f9c97ef55b1df rdf:first sg:person.01200324130.45
135 rdf:rest rdf:nil
136 Nebe90488ed3d4553bd87a0d308af9b00 rdf:first sg:person.01146120514.34
137 rdf:rest Nd1a1b91e561b4821bd02d732051829ac
138 Neca2052becc4403aa81fc26fb28db78d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Young Adult
140 rdf:type schema:DefinedTerm
141 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
142 schema:name Information and Computing Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
145 schema:name Artificial Intelligence and Image Processing
146 rdf:type schema:DefinedTerm
147 sg:journal.1045337 schema:issn 2045-2322
148 schema:name Scientific Reports
149 schema:publisher Springer Nature
150 rdf:type schema:Periodical
151 sg:person.01146120514.34 schema:affiliation grid-institutes:grid.4567.0
152 schema:familyName Linkohr
153 schema:givenName Birgit
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146120514.34
155 rdf:type schema:Person
156 sg:person.01200324130.45 schema:affiliation grid-institutes:grid.452396.f
157 schema:familyName Pischon
158 schema:givenName Tobias
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200324130.45
160 rdf:type schema:Person
161 sg:person.012277323757.52 schema:affiliation grid-institutes:grid.4567.0
162 schema:familyName Ferland
163 schema:givenName Maike
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012277323757.52
165 rdf:type schema:Person
166 sg:person.01232337642.45 schema:affiliation grid-institutes:grid.211011.2
167 schema:familyName Jaeschke
168 schema:givenName Lina
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232337642.45
170 rdf:type schema:Person
171 sg:person.0604451142.08 schema:affiliation grid-institutes:grid.211011.2
172 schema:familyName Steinbrecher
173 schema:givenName Astrid
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604451142.08
175 rdf:type schema:Person
176 sg:person.0605466241.08 schema:affiliation grid-institutes:grid.211011.2
177 schema:familyName Jeran
178 schema:givenName Stephanie
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605466241.08
180 rdf:type schema:Person
181 sg:person.0637527306.80 schema:affiliation grid-institutes:grid.452624.3
182 schema:familyName Schulz
183 schema:givenName Holger
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637527306.80
185 rdf:type schema:Person
186 sg:person.07624021745.06 schema:affiliation grid-institutes:grid.4567.0
187 schema:familyName Luzak
188 schema:givenName Agnes
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07624021745.06
190 rdf:type schema:Person
191 sg:pub.10.1007/s10654-014-9890-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027471058
192 https://doi.org/10.1007/s10654-014-9890-7
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/1471-2458-14-1210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024226420
195 https://doi.org/10.1186/1471-2458-14-1210
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/1479-5868-10-120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008630548
198 https://doi.org/10.1186/1479-5868-10-120
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/1479-5868-5-56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035703248
201 https://doi.org/10.1186/1479-5868-5-56
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/s12889-015-1847-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016884783
204 https://doi.org/10.1186/s12889-015-1847-6
205 rdf:type schema:CreativeWork
206 grid-institutes:grid.211011.2 schema:alternateName Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
207 schema:name Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
208 rdf:type schema:Organization
209 grid-institutes:grid.452396.f schema:alternateName DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
210 schema:name Charité – Universitätsmedizin Berlin, Berlin, Germany
211 DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
212 Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
213 rdf:type schema:Organization
214 grid-institutes:grid.452624.3 schema:alternateName Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany
215 schema:name Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany
216 Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
217 rdf:type schema:Organization
218 grid-institutes:grid.4567.0 schema:alternateName Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
219 Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
220 schema:name Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
221 Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...