Spin-dependent thermoelectric effects in Fe-C6 doped monolayer MoS2 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-03-29

AUTHORS

Lin Zhu, Fei Zou, Guoying Gao, Kailun Yao

ABSTRACT

By using the non-equilibrium Green’s function with density functional theory, we have studied the thermal spin transport properties of Fe-C6 cluster doped monolayer MoS2. The results show that the device has a perfect Seebeck effect under temperature difference without gate voltage or bias voltage. Moreover, we also find the thermal colossal magnetoresistance effect, which is as high as 107%. The competition between spin up electrons and spin down holes of the parallel spin configuration leads to peculiar behavior of colossal magnetoresistance and thermo-current, which is essential for the design of thermal transistors. These results are useful in future MoS2-based multifunctional spin caloritronic devices. More... »

PAGES

497

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-00599-6

DOI

http://dx.doi.org/10.1038/s41598-017-00599-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084130725

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28356556


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Lin", 
        "id": "sg:person.01225162615.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225162615.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zou", 
        "givenName": "Fei", 
        "id": "sg:person.013233340303.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233340303.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Guoying", 
        "id": "sg:person.013345107235.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345107235.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Kailun", 
        "id": "sg:person.012133406471.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012133406471.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep18342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043062087", 
          "https://doi.org/10.1038/srep18342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024306812", 
          "https://doi.org/10.1038/nature04937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018153553", 
          "https://doi.org/10.1038/nmat3301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep03987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033860394", 
          "https://doi.org/10.1038/srep03987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047234331", 
          "https://doi.org/10.1038/nature07321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008851460", 
          "https://doi.org/10.1038/nmat2856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004813700", 
          "https://doi.org/10.1038/nmat2860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034561677", 
          "https://doi.org/10.1038/nature11221"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03-29", 
    "datePublishedReg": "2017-03-29", 
    "description": "By using the non-equilibrium Green\u2019s function with density functional theory, we have studied the thermal spin transport properties of Fe-C6 cluster doped monolayer MoS2. The results show that the device has a perfect Seebeck effect under temperature difference without gate voltage or bias voltage. Moreover, we also find the thermal colossal magnetoresistance effect, which is as high as 107%. The competition between spin up electrons and spin down holes of the parallel spin configuration leads to peculiar behavior of colossal magnetoresistance and thermo-current, which is essential for the design of thermal transistors. These results are useful in future MoS2-based multifunctional spin caloritronic devices.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-017-00599-6", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8116970", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8120850", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "thermal spin transport properties", 
      "spin caloritronic devices", 
      "spin transport properties", 
      "monolayer MoS2", 
      "temperature difference", 
      "thermal transistor", 
      "caloritronic devices", 
      "spin-dependent thermoelectric effects", 
      "bias voltage", 
      "Seebeck effect", 
      "thermoelectric effect", 
      "gate voltage", 
      "non-equilibrium Green's function", 
      "transport properties", 
      "colossal magnetoresistance effect", 
      "magnetoresistance effect", 
      "MoS2", 
      "voltage", 
      "parallel spin configuration", 
      "colossal magnetoresistance", 
      "devices", 
      "density functional theory", 
      "transistors", 
      "Green's function", 
      "spin configurations", 
      "thermo", 
      "functional theory", 
      "peculiar behavior", 
      "magnetoresistance", 
      "configuration", 
      "design", 
      "properties", 
      "holes", 
      "results", 
      "effect", 
      "electrons", 
      "spin", 
      "behavior", 
      "function", 
      "theory", 
      "clusters", 
      "differences", 
      "competition"
    ], 
    "name": "Spin-dependent thermoelectric effects in Fe-C6 doped monolayer MoS2", 
    "pagination": "497", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084130725"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-00599-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28356556"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-00599-6", 
      "https://app.dimensions.ai/details/publication/pub.1084130725"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_753.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-017-00599-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-00599-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-00599-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-00599-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-00599-6'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      76 URIs      60 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-00599-6 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N4fdd95a2858d46f092efc9343709601e
4 schema:citation sg:pub.10.1038/nature04937
5 sg:pub.10.1038/nature07321
6 sg:pub.10.1038/nature11221
7 sg:pub.10.1038/nmat2856
8 sg:pub.10.1038/nmat2860
9 sg:pub.10.1038/nmat3301
10 sg:pub.10.1038/srep03987
11 sg:pub.10.1038/srep18342
12 schema:datePublished 2017-03-29
13 schema:datePublishedReg 2017-03-29
14 schema:description By using the non-equilibrium Green’s function with density functional theory, we have studied the thermal spin transport properties of Fe-C6 cluster doped monolayer MoS2. The results show that the device has a perfect Seebeck effect under temperature difference without gate voltage or bias voltage. Moreover, we also find the thermal colossal magnetoresistance effect, which is as high as 107%. The competition between spin up electrons and spin down holes of the parallel spin configuration leads to peculiar behavior of colossal magnetoresistance and thermo-current, which is essential for the design of thermal transistors. These results are useful in future MoS2-based multifunctional spin caloritronic devices.
15 schema:genre article
16 schema:isAccessibleForFree true
17 schema:isPartOf N52d785521494407d85d94ce14b455725
18 Nc18ca463cf55400b9c42b32afc46df7b
19 sg:journal.1045337
20 schema:keywords Green's function
21 MoS2
22 Seebeck effect
23 behavior
24 bias voltage
25 caloritronic devices
26 clusters
27 colossal magnetoresistance
28 colossal magnetoresistance effect
29 competition
30 configuration
31 density functional theory
32 design
33 devices
34 differences
35 effect
36 electrons
37 function
38 functional theory
39 gate voltage
40 holes
41 magnetoresistance
42 magnetoresistance effect
43 monolayer MoS2
44 non-equilibrium Green's function
45 parallel spin configuration
46 peculiar behavior
47 properties
48 results
49 spin
50 spin caloritronic devices
51 spin configurations
52 spin transport properties
53 spin-dependent thermoelectric effects
54 temperature difference
55 theory
56 thermal spin transport properties
57 thermal transistor
58 thermo
59 thermoelectric effect
60 transistors
61 transport properties
62 voltage
63 schema:name Spin-dependent thermoelectric effects in Fe-C6 doped monolayer MoS2
64 schema:pagination 497
65 schema:productId N2741748983a54274bbe6e0e12e833315
66 N339a9692d62d4577a47fcc0a7cc3b03e
67 N791f89b855b24a029fe95a4be3ecdc1a
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084130725
69 https://doi.org/10.1038/s41598-017-00599-6
70 schema:sdDatePublished 2022-10-01T06:44
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N0fa45807cf0345bcb4cd5e2592e8a1ba
73 schema:url https://doi.org/10.1038/s41598-017-00599-6
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N02fd2d4fb1804e93af76ba1160326d25 rdf:first sg:person.013345107235.61
78 rdf:rest Nb81004c601c54bcc9a33daa8893eb689
79 N0fa45807cf0345bcb4cd5e2592e8a1ba schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N2741748983a54274bbe6e0e12e833315 schema:name doi
82 schema:value 10.1038/s41598-017-00599-6
83 rdf:type schema:PropertyValue
84 N339a9692d62d4577a47fcc0a7cc3b03e schema:name pubmed_id
85 schema:value 28356556
86 rdf:type schema:PropertyValue
87 N3a46e47b7baa4ec196ddeac8b1a8bef8 rdf:first sg:person.013233340303.23
88 rdf:rest N02fd2d4fb1804e93af76ba1160326d25
89 N4fdd95a2858d46f092efc9343709601e rdf:first sg:person.01225162615.38
90 rdf:rest N3a46e47b7baa4ec196ddeac8b1a8bef8
91 N52d785521494407d85d94ce14b455725 schema:volumeNumber 7
92 rdf:type schema:PublicationVolume
93 N791f89b855b24a029fe95a4be3ecdc1a schema:name dimensions_id
94 schema:value pub.1084130725
95 rdf:type schema:PropertyValue
96 Nb81004c601c54bcc9a33daa8893eb689 rdf:first sg:person.012133406471.13
97 rdf:rest rdf:nil
98 Nc18ca463cf55400b9c42b32afc46df7b schema:issueNumber 1
99 rdf:type schema:PublicationIssue
100 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
101 schema:name Engineering
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
104 schema:name Materials Engineering
105 rdf:type schema:DefinedTerm
106 sg:grant.8116970 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-00599-6
107 rdf:type schema:MonetaryGrant
108 sg:grant.8120850 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-00599-6
109 rdf:type schema:MonetaryGrant
110 sg:journal.1045337 schema:issn 2045-2322
111 schema:name Scientific Reports
112 schema:publisher Springer Nature
113 rdf:type schema:Periodical
114 sg:person.012133406471.13 schema:affiliation grid-institutes:grid.33199.31
115 schema:familyName Yao
116 schema:givenName Kailun
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012133406471.13
118 rdf:type schema:Person
119 sg:person.01225162615.38 schema:affiliation grid-institutes:grid.33199.31
120 schema:familyName Zhu
121 schema:givenName Lin
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225162615.38
123 rdf:type schema:Person
124 sg:person.013233340303.23 schema:affiliation grid-institutes:grid.33199.31
125 schema:familyName Zou
126 schema:givenName Fei
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233340303.23
128 rdf:type schema:Person
129 sg:person.013345107235.61 schema:affiliation grid-institutes:grid.33199.31
130 schema:familyName Gao
131 schema:givenName Guoying
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345107235.61
133 rdf:type schema:Person
134 sg:pub.10.1038/nature04937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024306812
135 https://doi.org/10.1038/nature04937
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nature07321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047234331
138 https://doi.org/10.1038/nature07321
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nature11221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034561677
141 https://doi.org/10.1038/nature11221
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nmat2856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008851460
144 https://doi.org/10.1038/nmat2856
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nmat2860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004813700
147 https://doi.org/10.1038/nmat2860
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nmat3301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018153553
150 https://doi.org/10.1038/nmat3301
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/srep03987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033860394
153 https://doi.org/10.1038/srep03987
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/srep18342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043062087
156 https://doi.org/10.1038/srep18342
157 rdf:type schema:CreativeWork
158 grid-institutes:grid.33199.31 schema:alternateName School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China
159 schema:name School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...