Network Anatomy Controlling Abrupt-like Percolation Transition View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Hirokazu Kawamoto, Hideki Takayasu, Misako Takayasu

ABSTRACT

We virtually dissect complex networks in order to understand their internal structure, just as doctors do with the bodies of animals. Our novel method classifies network links into four categories: bone, fat, cartilage, and muscle, based on network connectivity. We derive an efficient percolation strategy from this new viewpoint of network anatomy, which enables abrupt-like percolation transition through removal of a small amount of cartilage links, which play a crucial role in network connectivity. Furthermore, we find nontrivial scaling laws in the relationships between four types of links in each cluster and evaluate power exponents, which characterize network structures as seen in the real large-scale network of trading business firms and in the Erdős-Rényi network. Finally, we observe changes in the transition point for random bond percolation process, demonstrating that the addition of muscle links enhances network robustness, while fat links are irrelevant. These findings aid in controlling the percolation transition for an arbitrary network. More... »

PAGES

163

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-017-00242-4

DOI

http://dx.doi.org/10.1038/s41598-017-00242-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084130378

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28279026


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology 4259, 226-8502, Nagatsuta-cho, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawamoto", 
        "givenName": "Hirokazu", 
        "id": "sg:person.0622124325.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622124325.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sony Computer Science Laboratories", 
          "id": "https://www.grid.ac/institutes/grid.452725.3", 
          "name": [
            "Institute of Innovative Research, Tokyo Institute of Technology 4259, 226-8502, Nagatsuta-cho, Yokohama, Japan", 
            "Sony Computer Science Laboratories, 3-14-13, Higashi-Gotanda, 141-0022, Shinagawa-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takayasu", 
        "givenName": "Hideki", 
        "id": "sg:person.011452542725.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011452542725.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology 4259, 226-8502, Nagatsuta-cho, Yokohama, Japan", 
            "Institute of Innovative Research, Tokyo Institute of Technology 4259, 226-8502, Nagatsuta-cho, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takayasu", 
        "givenName": "Misako", 
        "id": "sg:person.013527045464.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527045464.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.85.5468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000282463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.5468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000282463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003429390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003429390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1167782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005403752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1167782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005403752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1009440108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007073067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35019019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008269744", 
          "https://doi.org/10.1038/35019019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35019019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008269744", 
          "https://doi.org/10.1038/35019019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.4626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009810049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.4626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009810049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010080128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010370510", 
          "https://doi.org/10.1038/nature08932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010370510", 
          "https://doi.org/10.1038/nature08932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.255701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013445316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.255701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013445316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.066130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014095324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.066130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014095324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.095703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015800105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.095703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015800105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0601602103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016125157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016416471", 
          "https://doi.org/10.1038/nature03288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016416471", 
          "https://doi.org/10.1038/nature03288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016710118", 
          "https://doi.org/10.1038/nphys1746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.122653799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018411012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025206678", 
          "https://doi.org/10.1038/ncomms1774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1957.tb01515.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025892743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep11905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026082799", 
          "https://doi.org/10.1038/srep11905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/362248.362272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026240786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0119979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028291923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.047101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029700470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.047101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029700470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030304197", 
          "https://doi.org/10.1038/nature14604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-8733(83)90028-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032506438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-8733(83)90028-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032506438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.79.036114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034152106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.79.036114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034152106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.7332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038563506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.7332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038563506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0001049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042196054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1006642108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043706169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049950950", 
          "https://doi.org/10.1038/srep00232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35082140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050452862", 
          "https://doi.org/10.1038/35082140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0253-6102/64/2/231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059047142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/10/11/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059064160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/14/5/013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059065652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/17/4/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059067203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1206241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062464729"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "We virtually dissect complex networks in order to understand their internal structure, just as doctors do with the bodies of animals. Our novel method classifies network links into four categories: bone, fat, cartilage, and muscle, based on network connectivity. We derive an efficient percolation strategy from this new viewpoint of network anatomy, which enables abrupt-like percolation transition through removal of a small amount of cartilage links, which play a crucial role in network connectivity. Furthermore, we find nontrivial scaling laws in the relationships between four types of links in each cluster and evaluate power exponents, which characterize network structures as seen in the real large-scale network of trading business firms and in the Erd\u0151s-R\u00e9nyi network. Finally, we observe changes in the transition point for random bond percolation process, demonstrating that the addition of muscle links enhances network robustness, while fat links are irrelevant. These findings aid in controlling the percolation transition for an arbitrary network.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-017-00242-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6138456", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Network Anatomy Controlling Abrupt-like Percolation Transition", 
    "pagination": "163", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9ce6157b67b044a241e2aadfef2dbb345bdfba5299499cf38a199a3275ebd90c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28279026"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-017-00242-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084130378"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-017-00242-4", 
      "https://app.dimensions.ai/details/publication/pub.1084130378"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000492.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-017-00242-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-00242-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-00242-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-00242-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-017-00242-4'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-017-00242-4 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nc545adb7707d47d5a34e1f42426df613
4 schema:citation sg:pub.10.1038/30918
5 sg:pub.10.1038/35019019
6 sg:pub.10.1038/35082140
7 sg:pub.10.1038/nature03288
8 sg:pub.10.1038/nature08932
9 sg:pub.10.1038/nature14604
10 sg:pub.10.1038/ncomms1774
11 sg:pub.10.1038/nphys1746
12 sg:pub.10.1038/srep00232
13 sg:pub.10.1038/srep11905
14 https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
15 https://doi.org/10.1016/0378-8733(83)90028-x
16 https://doi.org/10.1073/pnas.0601602103
17 https://doi.org/10.1073/pnas.1006642108
18 https://doi.org/10.1073/pnas.1009440108
19 https://doi.org/10.1073/pnas.122653799
20 https://doi.org/10.1088/0253-6102/64/2/231
21 https://doi.org/10.1088/0305-4470/10/11/008
22 https://doi.org/10.1088/0305-4470/14/5/013
23 https://doi.org/10.1088/0305-4470/17/4/008
24 https://doi.org/10.1103/physreve.60.7332
25 https://doi.org/10.1103/physreve.71.047101
26 https://doi.org/10.1103/physreve.79.036114
27 https://doi.org/10.1103/physreve.85.066130
28 https://doi.org/10.1103/physrevlett.105.255701
29 https://doi.org/10.1103/physrevlett.106.095703
30 https://doi.org/10.1103/physrevlett.85.4626
31 https://doi.org/10.1103/physrevlett.85.5468
32 https://doi.org/10.1103/physrevlett.86.3682
33 https://doi.org/10.1126/science.1167782
34 https://doi.org/10.1126/science.1206241
35 https://doi.org/10.1126/science.286.5439.509
36 https://doi.org/10.1145/362248.362272
37 https://doi.org/10.1371/journal.pone.0001049
38 https://doi.org/10.1371/journal.pone.0119979
39 schema:datePublished 2017-12
40 schema:datePublishedReg 2017-12-01
41 schema:description We virtually dissect complex networks in order to understand their internal structure, just as doctors do with the bodies of animals. Our novel method classifies network links into four categories: bone, fat, cartilage, and muscle, based on network connectivity. We derive an efficient percolation strategy from this new viewpoint of network anatomy, which enables abrupt-like percolation transition through removal of a small amount of cartilage links, which play a crucial role in network connectivity. Furthermore, we find nontrivial scaling laws in the relationships between four types of links in each cluster and evaluate power exponents, which characterize network structures as seen in the real large-scale network of trading business firms and in the Erdős-Rényi network. Finally, we observe changes in the transition point for random bond percolation process, demonstrating that the addition of muscle links enhances network robustness, while fat links are irrelevant. These findings aid in controlling the percolation transition for an arbitrary network.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N46a7198260ae4626b72f1b111b7a5c77
46 Nd7659c90732b4d7983fc701bfcb64e4a
47 sg:journal.1045337
48 schema:name Network Anatomy Controlling Abrupt-like Percolation Transition
49 schema:pagination 163
50 schema:productId N2232810ed654460b89c1364f5591e48f
51 N32f4fe62da5a4a63988005b9d04cd9ab
52 N57312811b45e4a688f4bb51849c15c4c
53 Nbfc76f74c5f340cab8c1db094f8bab49
54 Ne421c216406c46f5b7c6aa285a84d2af
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084130378
56 https://doi.org/10.1038/s41598-017-00242-4
57 schema:sdDatePublished 2019-04-11T00:11
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N169cdb514fa148f1889dc23870303e31
60 schema:url https://www.nature.com/articles/s41598-017-00242-4
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N169cdb514fa148f1889dc23870303e31 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N1a918d6f893f4b05bafb678a7df472f3 rdf:first sg:person.013527045464.18
67 rdf:rest rdf:nil
68 N2232810ed654460b89c1364f5591e48f schema:name readcube_id
69 schema:value 9ce6157b67b044a241e2aadfef2dbb345bdfba5299499cf38a199a3275ebd90c
70 rdf:type schema:PropertyValue
71 N32f4fe62da5a4a63988005b9d04cd9ab schema:name doi
72 schema:value 10.1038/s41598-017-00242-4
73 rdf:type schema:PropertyValue
74 N42c364c9567c473f8ba86540cf730545 schema:name Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology 4259, 226-8502, Nagatsuta-cho, Yokohama, Japan
75 rdf:type schema:Organization
76 N46a7198260ae4626b72f1b111b7a5c77 schema:issueNumber 1
77 rdf:type schema:PublicationIssue
78 N57312811b45e4a688f4bb51849c15c4c schema:name nlm_unique_id
79 schema:value 101563288
80 rdf:type schema:PropertyValue
81 N9af3709631a247fb8cb82a113a41dc5d rdf:first sg:person.011452542725.42
82 rdf:rest N1a918d6f893f4b05bafb678a7df472f3
83 Nbfc76f74c5f340cab8c1db094f8bab49 schema:name pubmed_id
84 schema:value 28279026
85 rdf:type schema:PropertyValue
86 Nc545adb7707d47d5a34e1f42426df613 rdf:first sg:person.0622124325.91
87 rdf:rest N9af3709631a247fb8cb82a113a41dc5d
88 Nd7659c90732b4d7983fc701bfcb64e4a schema:volumeNumber 7
89 rdf:type schema:PublicationVolume
90 Ndc2244f3f4454fe0a9ba8378f937d671 schema:name Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology 4259, 226-8502, Nagatsuta-cho, Yokohama, Japan
91 Institute of Innovative Research, Tokyo Institute of Technology 4259, 226-8502, Nagatsuta-cho, Yokohama, Japan
92 rdf:type schema:Organization
93 Ne421c216406c46f5b7c6aa285a84d2af schema:name dimensions_id
94 schema:value pub.1084130378
95 rdf:type schema:PropertyValue
96 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
97 schema:name Medical and Health Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
100 schema:name Clinical Sciences
101 rdf:type schema:DefinedTerm
102 sg:grant.6138456 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-017-00242-4
103 rdf:type schema:MonetaryGrant
104 sg:journal.1045337 schema:issn 2045-2322
105 schema:name Scientific Reports
106 rdf:type schema:Periodical
107 sg:person.011452542725.42 schema:affiliation https://www.grid.ac/institutes/grid.452725.3
108 schema:familyName Takayasu
109 schema:givenName Hideki
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011452542725.42
111 rdf:type schema:Person
112 sg:person.013527045464.18 schema:affiliation Ndc2244f3f4454fe0a9ba8378f937d671
113 schema:familyName Takayasu
114 schema:givenName Misako
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527045464.18
116 rdf:type schema:Person
117 sg:person.0622124325.91 schema:affiliation N42c364c9567c473f8ba86540cf730545
118 schema:familyName Kawamoto
119 schema:givenName Hirokazu
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622124325.91
121 rdf:type schema:Person
122 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
123 https://doi.org/10.1038/30918
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/35019019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008269744
126 https://doi.org/10.1038/35019019
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/35082140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050452862
129 https://doi.org/10.1038/35082140
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nature03288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016416471
132 https://doi.org/10.1038/nature03288
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nature08932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010370510
135 https://doi.org/10.1038/nature08932
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nature14604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030304197
138 https://doi.org/10.1038/nature14604
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/ncomms1774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025206678
141 https://doi.org/10.1038/ncomms1774
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nphys1746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016710118
144 https://doi.org/10.1038/nphys1746
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/srep00232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049950950
147 https://doi.org/10.1038/srep00232
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/srep11905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026082799
150 https://doi.org/10.1038/srep11905
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/j.1538-7305.1957.tb01515.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025892743
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/0378-8733(83)90028-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032506438
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1073/pnas.0601602103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016125157
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1073/pnas.1006642108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043706169
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1073/pnas.1009440108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007073067
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1073/pnas.122653799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411012
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1088/0253-6102/64/2/231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059047142
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1088/0305-4470/10/11/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059064160
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1088/0305-4470/14/5/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059065652
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1088/0305-4470/17/4/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059067203
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physreve.60.7332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038563506
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physreve.71.047101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029700470
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physreve.79.036114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034152106
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physreve.85.066130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014095324
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevlett.105.255701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013445316
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.106.095703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015800105
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.85.4626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009810049
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevlett.85.5468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000282463
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.86.3682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003429390
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1126/science.1167782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005403752
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1126/science.1206241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464729
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1145/362248.362272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026240786
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1371/journal.pone.0001049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042196054
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1371/journal.pone.0119979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028291923
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.452725.3 schema:alternateName Sony Computer Science Laboratories
203 schema:name Institute of Innovative Research, Tokyo Institute of Technology 4259, 226-8502, Nagatsuta-cho, Yokohama, Japan
204 Sony Computer Science Laboratories, 3-14-13, Higashi-Gotanda, 141-0022, Shinagawa-ku, Tokyo, Japan
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...